新聞中心
這里有您想知道的互聯(lián)網(wǎng)營(yíng)銷解決方案
Python3.5Pandas模塊缺失值處理和層次索引實(shí)例詳解-創(chuàng)新互聯(lián)
本文實(shí)例講述了Python3.5 Pandas模塊缺失值處理和層次索引。分享給大家供大家參考,具體如下:
1、pandas缺失值處理
import numpy as np import pandas as pd from pandas import Series,DataFrame df3 = DataFrame([ ["Tom",np.nan,456.67,"M"], ["Merry",34,345.56,np.nan], [np.nan,np.nan,np.nan,np.nan], ["John",23,np.nan,"M"], ["Joe",18,385.12,"F"] ],columns = ["name","age","salary","gender"]) print(df3) print("=======判斷NaN值=======") print(df3.isnull()) print("=======判斷非NaN值=======") print(df3.notnull()) print("=======刪除包含NaN值的行=======") print(df3.dropna()) print("=======刪除全部為NaN值的行=======") print(df3.dropna(how="all")) df3.ix[2,0] = "Gerry" #修改第2行第0列的值 print(df3) print("=======刪除包含NaN值的列=======") print(df3.dropna(axis=1))
當(dāng)前文章:Python3.5Pandas模塊缺失值處理和層次索引實(shí)例詳解-創(chuàng)新互聯(lián)
網(wǎng)頁(yè)網(wǎng)址:http://www.dlmjj.cn/article/jdepd.html