日本综合一区二区|亚洲中文天堂综合|日韩欧美自拍一区|男女精品天堂一区|欧美自拍第6页亚洲成人精品一区|亚洲黄色天堂一区二区成人|超碰91偷拍第一页|日韩av夜夜嗨中文字幕|久久蜜综合视频官网|精美人妻一区二区三区

RELATEED CONSULTING
相關咨詢
選擇下列產品馬上在線溝通
服務時間:8:30-17:00
你可能遇到了下面的問題
關閉右側工具欄

新聞中心

這里有您想知道的互聯(lián)網(wǎng)營銷解決方案
php可以大數(shù)據(jù)分析 php 大數(shù)據(jù)處理

大數(shù)據(jù)是學php嗎?

兩者不是同一個概念,PHP只是一種程序,而大數(shù)據(jù)指的是通過用戶的各種數(shù)據(jù)分析的方式,可以全方位的了解一個人或者是一件事情,大數(shù)據(jù)指的是一種分析方式,可以有很多實現(xiàn)的途徑,如果非要分類的話屬于數(shù)據(jù)分析。

創(chuàng)新互聯(lián)建站堅持“要么做到,要么別承諾”的工作理念,服務領域包括:網(wǎng)站建設、成都網(wǎng)站制作、企業(yè)官網(wǎng)、英文網(wǎng)站、手機端網(wǎng)站、網(wǎng)站推廣等服務,滿足客戶于互聯(lián)網(wǎng)時代的洪雅網(wǎng)站設計、移動媒體設計的需求,幫助企業(yè)找到有效的互聯(lián)網(wǎng)解決方案。努力成為您成熟可靠的網(wǎng)絡建設合作伙伴!

PHP-大數(shù)據(jù)量怎么處理優(yōu)化

大數(shù)據(jù)的話可以進行以下操作:

減少對數(shù)據(jù)庫的讀取,也就是減少調用數(shù)據(jù)庫,

進行數(shù)據(jù)緩存,

利用數(shù)據(jù)庫的自身優(yōu)化技術,如索引等

精確查詢條件,有利于提高查找速度

PHP的算法可以實現(xiàn)大數(shù)據(jù)分析嗎

1.Bloom filter

適用范圍:可以用來實現(xiàn)數(shù)據(jù)字典,進行數(shù)據(jù)的判重,或者集合求交集

基本原理及要點:

對于原理來說很簡單,位數(shù)組+k個獨立hash函數(shù)。將hash函數(shù)對應的值的位數(shù)組置1,查找時如果發(fā)現(xiàn)所有hash函數(shù)對應位都是1說明存在,很明顯這個過程并不保證查找的結果是100%正確的。同時也不支持刪除一個已經插入的關鍵字,因為該關鍵字對應的位會牽動到其他的關鍵字。所以一個簡單的改進就是 counting Bloom filter,用一個counter數(shù)組代替位數(shù)組,就可以支持刪除了。

還有一個比較重要的問題,如何根據(jù)輸入元素個數(shù)n,確定位數(shù)組m的大小及hash函數(shù)個數(shù)。當hash函數(shù)個數(shù)k=(ln2)*(m/n)時錯誤率最小。在錯誤率不大于E的情況下,m至少要等于n*lg(1/E)才能表示任意n個元素的集合。但m還應該更大些,因為還要保證bit數(shù)組里至少一半為 0,則m 應該=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2為底的對數(shù))。

舉個例子我們假設錯誤率為0.01,則此時m應大概是n的13倍。這樣k大概是8個。

注意這里m與n的單位不同,m是bit為單位,而n則是以元素個數(shù)為單位(準確的說是不同元素的個數(shù))。通常單個元素的長度都是有很多bit的。所以使用bloom filter內存上通常都是節(jié)省的。

擴展:

Bloom filter將集合中的元素映射到位數(shù)組中,用k(k為哈希函數(shù)個數(shù))個映射位是否全1表示元素在不在這個集合中。Counting bloom filter(CBF)將位數(shù)組中的每一位擴展為一個counter,從而支持了元素的刪除操作。Spectral Bloom Filter(SBF)將其與集合元素的出現(xiàn)次數(shù)關聯(lián)。SBF采用counter中的最小值來近似表示元素的出現(xiàn)頻率。

問題實例:給你A,B兩個文件,各存放50億條URL,每條URL占用64字節(jié),內存限制是4G,讓你找出A,B文件共同的URL。如果是三個乃至n個文件呢?

根據(jù)這個問題我們來計算下內存的占用,4G=2^32大概是40億*8大概是340億,n=50億,如果按出錯率0.01算需要的大概是650億個 bit?,F(xiàn)在可用的是340億,相差并不多,這樣可能會使出錯率上升些。另外如果這些urlip是一一對應的,就可以轉換成ip,則大大簡單了。

2.Hashing

適用范圍:快速查找,刪除的基本數(shù)據(jù)結構,通常需要總數(shù)據(jù)量可以放入內存

基本原理及要點:

hash函數(shù)選擇,針對字符串,整數(shù),排列,具體相應的hash方法。

碰撞處理,一種是open hashing,也稱為拉鏈法;另一種就是closed hashing,也稱開地址法,opened addressing。 ()

擴展:

d-left hashing中的d是多個的意思,我們先簡化這個問題,看一看2-left hashing。2-left hashing指的是將一個哈希表分成長度相等的兩半,分別叫做T1和T2,給T1和T2分別配備一個哈希函數(shù),h1和h2。在存儲一個新的key時,同時用兩個哈希函數(shù)進行計算,得出兩個地址h1[key]和h2[key]。這時需要檢查T1中的h1[key]位置和T2中的h2[key]位置,哪一個位置已經存儲的(有碰撞的)key比較多,然后將新key存儲在負載少的位置。如果兩邊一樣多,比如兩個位置都為空或者都存儲了一個key,就把新key 存儲在左邊的T1子表中,2-left也由此而來。在查找一個key時,必須進行兩次hash,同時查找兩個位置。

問題實例:

1).海量日志數(shù)據(jù),提取出某日訪問百度次數(shù)最多的那個IP。

IP的數(shù)目還是有限的,最多2^32個,所以可以考慮使用hash將ip直接存入內存,然后進行統(tǒng)計。

3.bit-map

適用范圍:可進行數(shù)據(jù)的快速查找,判重,刪除,一般來說數(shù)據(jù)范圍是int的10倍以下

基本原理及要點:使用bit數(shù)組來表示某些元素是否存在,比如8位電話號碼

擴展:bloom filter可以看做是對bit-map的擴展

問題實例:

1)已知某個文件內包含一些電話號碼,每個號碼為8位數(shù)字,統(tǒng)計不同號碼的個數(shù)。

8位最多99 999 999,大概需要99m個bit,大概10幾m字節(jié)的內存即可。

2)2.5億個整數(shù)中找出不重復的整數(shù)的個數(shù),內存空間不足以容納這2.5億個整數(shù)。

將bit-map擴展一下,用2bit表示一個數(shù)即可,0表示未出現(xiàn),1表示出現(xiàn)一次,2表示出現(xiàn)2次及以上?;蛘呶覀儾挥?bit來進行表示,我們用兩個bit-map即可模擬實現(xiàn)這個2bit-map。

4.堆

適用范圍:海量數(shù)據(jù)前n大,并且n比較小,堆可以放入內存

基本原理及要點:最大堆求前n小,最小堆求前n大。方法,比如求前n小,我們比較當前元素與最大堆里的最大元素,如果它小于最大元素,則應該替換那個最大元素。這樣最后得到的n個元素就是最小的n個。適合大數(shù)據(jù)量,求前n小,n的大小比較小的情況,這樣可以掃描一遍即可得到所有的前n元素,效率很高。

擴展:雙堆,一個最大堆與一個最小堆結合,可以用來維護中位數(shù)。

問題實例:

1)100w個數(shù)中找最大的前100個數(shù)。

用一個100個元素大小的最小堆即可。

5.雙層桶劃分 ----其實本質上就是【分而治之】的思想,重在“分”的技巧上!

適用范圍:第k大,中位數(shù),不重復或重復的數(shù)字

基本原理及要點:因為元素范圍很大,不能利用直接尋址表,所以通過多次劃分,逐步確定范圍,然后最后在一個可以接受的范圍內進行。可以通過多次縮小,雙層只是一個例子。

擴展:

問題實例:

1).2.5億個整數(shù)中找出不重復的整數(shù)的個數(shù),內存空間不足以容納這2.5億個整數(shù)。

有點像鴿巢原理,整數(shù)個數(shù)為2^32,也就是,我們可以將這2^32個數(shù),劃分為2^8個區(qū)域(比如用單個文件代表一個區(qū)域),然后將數(shù)據(jù)分離到不同的區(qū)域,然后不同的區(qū)域在利用bitmap就可以直接解決了。也就是說只要有足夠的磁盤空間,就可以很方便的解決。

2).5億個int找它們的中位數(shù)。

這個例子比上面那個更明顯。首先我們將int劃分為2^16個區(qū)域,然后讀取數(shù)據(jù)統(tǒng)計落到各個區(qū)域里的數(shù)的個數(shù),之后我們根據(jù)統(tǒng)計結果就可以判斷中位數(shù)落到那個區(qū)域,同時知道這個區(qū)域中的第幾大數(shù)剛好是中位數(shù)。然后第二次掃描我們只統(tǒng)計落在這個區(qū)域中的那些數(shù)就可以了。

實際上,如果不是int是int64,我們可以經過3次這樣的劃分即可降低到可以接受的程度。即可以先將int64分成2^24個區(qū)域,然后確定區(qū)域的第幾大數(shù),在將該區(qū)域分成2^20個子區(qū)域,然后確定是子區(qū)域的第幾大數(shù),然后子區(qū)域里的數(shù)的個數(shù)只有2^20,就可以直接利用direct addr table進行統(tǒng)計了。

6.數(shù)據(jù)庫索引

適用范圍:大數(shù)據(jù)量的增刪改查

基本原理及要點:利用數(shù)據(jù)的設計實現(xiàn)方法,對海量數(shù)據(jù)的增刪改查進行處理。

擴展:

問題實例:

7.倒排索引(Inverted index)

適用范圍:搜索引擎,關鍵字查詢

基本原理及要點:為何叫倒排索引?一種索引方法,被用來存儲在全文搜索下某個單詞在一個文檔或者一組文檔中的存儲位置的映射。

以英文為例,下面是要被索引的文本:

T0 = "it is what it is"

T1 = "what is it"

T2 = "it is a banana"

我們就能得到下面的反向文件索引:

"a": {2}

"banana": {2}

"is": {0, 1, 2}

"it": {0, 1, 2}

"what": {0, 1}

檢索的條件"what", "is" 和 "it" 將對應集合的交集。

正向索引開發(fā)出來用來存儲每個文檔的單詞的列表。正向索引的查詢往往滿足每個文檔有序頻繁的全文查詢和每個單詞在校驗文檔中的驗證這樣的查詢。在正向索引中,文檔占據(jù)了中心的位置,每個文檔指向了一個它所包含的索引項的序列。也就是說文檔指向了它包含的那些單詞,而反向索引則是單詞指向了包含它的文檔,很容易看到這個反向的關系。

擴展:

問題實例:文檔檢索系統(tǒng),查詢那些文件包含了某單詞,比如常見的學術論文的關鍵字搜索。

8.外排序

適用范圍:大數(shù)據(jù)的排序,去重

基本原理及要點:外排序的歸并方法,置換選擇 敗者樹原理,最優(yōu)歸并樹

擴展:

問題實例:

1).有一個1G大小的一個文件,里面每一行是一個詞,詞的大小不超過16個字節(jié),內存限制大小是1M。返回頻數(shù)最高的100個詞。

這個數(shù)據(jù)具有很明顯的特點,詞的大小為16個字節(jié),但是內存只有1m做hash有些不夠,所以可以用來排序。內存可以當輸入緩沖區(qū)使用。

9.trie樹

適用范圍:數(shù)據(jù)量大,重復多,但是數(shù)據(jù)種類小可以放入內存

基本原理及要點:實現(xiàn)方式,節(jié)點孩子的表示方式

擴展:壓縮實現(xiàn)。

問題實例:

1).有10個文件,每個文件1G, 每個文件的每一行都存放的是用戶的query,每個文件的query都可能重復。要你按照query的頻度排序 。

2).1000萬字符串,其中有些是相同的(重復),需要把重復的全部去掉,保留沒有重復的字符串。請問怎么設計和實現(xiàn)?

3).尋找熱門查詢:查詢串的重復度比較高,雖然總數(shù)是1千萬,但如果除去重復后,不超過3百萬個,每個不超過255字節(jié)。

10.分布式處理 mapreduce

適用范圍:數(shù)據(jù)量大,但是數(shù)據(jù)種類小可以放入內存

基本原理及要點:將數(shù)據(jù)交給不同的機器去處理,數(shù)據(jù)劃分,結果歸約。

擴展:

問題實例:

1).The canonical example application of MapReduce is a process to count the appearances of

each different word in a set of documents:

void map(String name, String document):

// name: document name

// document: document contents

for each word w in document:

EmitIntermediate(w, 1);

void reduce(String word, Iterator partialCounts):

// key: a word

// values: a list of aggregated partial counts

int result = 0;

for each v in partialCounts:

result += ParseInt(v);

Emit(result);

Here, each document is split in words, and each word is counted initially with a "1" value by

the Map function, using the word as the result key. The framework puts together all the pairs

with the same key and feeds them to the same call to Reduce, thus this function just needs to

sum all of its input values to find the total appearances of that word.

2).海量數(shù)據(jù)分布在100臺電腦中,想個辦法高效統(tǒng)計出這批數(shù)據(jù)的TOP10。

3).一共有N個機器,每個機器上有N個數(shù)。每個機器最多存O(N)個數(shù)并對它們操作。如何找到N^2個數(shù)的中數(shù)(median)?

經典問題分析

上千萬or億數(shù)據(jù)(有重復),統(tǒng)計其中出現(xiàn)次數(shù)最多的前N個數(shù)據(jù),分兩種情況:可一次讀入內存,不可一次讀入。

可用思路:trie樹+堆,數(shù)據(jù)庫索引,劃分子集分別統(tǒng)計,hash,分布式計算,近似統(tǒng)計,外排序

所謂的是否能一次讀入內存,實際上應該指去除重復后的數(shù)據(jù)量。如果去重后數(shù)據(jù)可以放入內存,我們可以為數(shù)據(jù)建立字典,比如通過 map,hashmap,trie,然后直接進行統(tǒng)計即可。當然在更新每條數(shù)據(jù)的出現(xiàn)次數(shù)的時候,我們可以利用一個堆來維護出現(xiàn)次數(shù)最多的前N個數(shù)據(jù),當然這樣導致維護次數(shù)增加,不如完全統(tǒng)計后在求前N大效率高。

如果數(shù)據(jù)無法放入內存。一方面我們可以考慮上面的字典方法能否被改進以適應這種情形,可以做的改變就是將字典存放到硬盤上,而不是內存,這可以參考數(shù)據(jù)庫的存儲方法。

當然還有更好的方法,就是可以采用分布式計算,基本上就是map-reduce過程,首先可以根據(jù)數(shù)據(jù)值或者把數(shù)據(jù)hash(md5)后的值,將數(shù)據(jù)按照范圍劃分到不同的機子,最好可以讓數(shù)據(jù)劃分后可以一次讀入內存,這樣不同的機子負責處理各種的數(shù)值范圍,實際上就是map。得到結果后,各個機子只需拿出各自的出現(xiàn)次數(shù)最多的前N個數(shù)據(jù),然后匯總,選出所有的數(shù)據(jù)中出現(xiàn)次數(shù)最多的前N個數(shù)據(jù),這實際上就是reduce過程。

實際上可能想直接將數(shù)據(jù)均分到不同的機子上進行處理,這樣是無法得到正確的解的。因為一個數(shù)據(jù)可能被均分到不同的機子上,而另一個則可能完全聚集到一個機子上,同時還可能存在具有相同數(shù)目的數(shù)據(jù)。比如我們要找出現(xiàn)次數(shù)最多的前100個,我們將1000萬的數(shù)據(jù)分布到10臺機器上,找到每臺出現(xiàn)次數(shù)最多的前 100個,歸并之后這樣不能保證找到真正的第100個,因為比如出現(xiàn)次數(shù)最多的第100個可能有1萬個,但是它被分到了10臺機子,這樣在每臺上只有1千個,假設這些機子排名在1000個之前的那些都是單獨分布在一臺機子上的,比如有1001個,這樣本來具有1萬個的這個就會被淘汰,即使我們讓每臺機子選出出現(xiàn)次數(shù)最多的1000個再歸并,仍然會出錯,因為可能存在大量個數(shù)為1001個的發(fā)生聚集。因此不能將數(shù)據(jù)隨便均分到不同機子上,而是要根據(jù)hash 后的值將它們映射到不同的機子上處理,讓不同的機器處理一個數(shù)值范圍。

而外排序的方法會消耗大量的IO,效率不會很高。而上面的分布式方法,也可以用于單機版本,也就是將總的數(shù)據(jù)根據(jù)值的范圍,劃分成多個不同的子文件,然后逐個處理。處理完畢之后再對這些單詞的及其出現(xiàn)頻率進行一個歸并。實際上就可以利用一個外排序的歸并過程。

另外還可以考慮近似計算,也就是我們可以通過結合自然語言屬性,只將那些真正實際中出現(xiàn)最多的那些詞作為一個字典,使得這個規(guī)模可以放入內存。

php能做大數(shù)據(jù)分析嗎

數(shù)據(jù)挖掘現(xiàn)在用的比較多的是python。

數(shù)據(jù)分析這塊現(xiàn)在用的比較多的是scala。

php不適合做大數(shù)據(jù)分析

全類分析是大數(shù)據(jù)挖掘算法嗎

、預測建模:將已有數(shù)據(jù)和模型用于對未知變量的語言。

分類,用于預測離散的目標變量。

回歸,用于預測連續(xù)的目標變量。

2、聚類分析:發(fā)現(xiàn)緊密相關的觀測值組群,使得與屬于不同簇的觀測值相比,屬于同一簇的觀測值相互之間盡可能類似。

3、關聯(lián)分析(又稱關系模式):反映一個事物與其他事物之間的相互依存性和關聯(lián)性。用來發(fā)現(xiàn)描述數(shù)據(jù)中強關聯(lián)特征的模式。

4、異常檢測:識別其特征顯著不同于其他數(shù)據(jù)的觀測值。

有時也把數(shù)據(jù)挖掘分為:分類,回歸,聚類,關聯(lián)分析。

二、大數(shù)據(jù)分析方法,常用的哪些

數(shù)據(jù)分析的目的越明確,分析越有價值。明確目的后,需要梳理思路,搭建分析框架,把分析目的分解成若干個不同的分析要點,然后針對每個分析要點確定分析方法和具體分析指標;最后,確保分析框架的體系化(體系化,即先分析什么,后分析什么,使得各個分析點之間具有邏輯聯(lián)系),使分析結果具有說服力。

大數(shù)據(jù)分析方法主要有4種,分別為:

可視化分析、數(shù)據(jù)挖掘算法、預測性分析能力、數(shù)據(jù)質量和數(shù)據(jù)管理。

三、大數(shù)據(jù)分析的理論核心就是什么算法

大數(shù)據(jù)分析在計算方面最重要的核心算法就是map和reduce。

四、PHP的算法可以實現(xiàn)大數(shù)據(jù)分析嗎?

首先,算法和語言無關;

其次,php的優(yōu)勢在于web開發(fā),其它方面也可以應用,但并不主流;

大數(shù)據(jù)處理java、python之類更好些,任何方面的應用最重要的其實是生態(tài)系統(tǒng)是否完善。

五、大數(shù)據(jù)的分析手段有哪些?

1.分類

分類是一種根本的數(shù)據(jù)剖析辦法,數(shù)據(jù)依據(jù)其特色,可將數(shù)據(jù)對象劃分為不同的部分和類型,再進一步剖析,可以進一步發(fā)掘事物的實質。

2.回歸

回歸是一種運用廣泛的計算剖析辦法,可以通過規(guī)定因變量和自變量來確認變量之間的因果關系,樹立回歸模型,并依據(jù)實測數(shù)據(jù)來求解模型的各參數(shù),然后點評回歸模型是否可以很好的擬合實測數(shù)據(jù),如果可以很好的擬合,則可以依據(jù)自變量作進一步猜測。

3.聚類

聚類是依據(jù)數(shù)據(jù)的內涵性質將數(shù)據(jù)分紅一些聚合類,每一聚合類中的元素盡可能具有相同的特性,不同聚合類之間的特性不同盡可能大的一種分類辦法,其與分類剖析不同,所劃分的類是不知道的,因而,聚類剖析也稱為無指導或無監(jiān)督的學習。

4.類似匹配

類似匹配是通過必定的辦法,來計算兩個數(shù)據(jù)的類似程度,類似程度一般會用一個是百分比來衡量。類似匹配算法被用在許多不同的計算場景,如數(shù)據(jù)清洗、用戶輸入糾錯、推薦計算、剽竊檢測體系、主動評分體系、網(wǎng)頁查找和DNA序列匹配等范疇。

5.頻頻項集

頻頻項集是指案例中頻頻出現(xiàn)的項的集合,如啤酒和尿不濕,Apriori算法是一種發(fā)掘關聯(lián)規(guī)矩的頻頻項集算法,其核心思想是通過候選集生成和情節(jié)的向下關閉檢測兩個階段來發(fā)掘頻頻項集,現(xiàn)在已被廣泛的應用在商業(yè)、網(wǎng)絡安全等范疇。

關于大數(shù)據(jù)的分析手段有哪些,青藤小編就和您分享到這里了。如果你對大數(shù)據(jù)工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多數(shù)據(jù)分析師、大數(shù)據(jù)工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

六、大數(shù)據(jù)分析的基礎是什么?

1、可視化分析

大數(shù)據(jù)分析的使用者有大數(shù)據(jù)分析專家,同時還有普通用戶,但是他們二者對于大數(shù)據(jù)分析最基本的要求就是可視化分析,因為可視化分析能夠直觀的呈現(xiàn)大數(shù)據(jù)特點,同時能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了。

2、數(shù)據(jù)挖掘算法

大數(shù)據(jù)分析的理論核心就是數(shù)據(jù)挖掘算法,各種數(shù)據(jù)挖掘的算法基于不同的數(shù)據(jù)類型和格式才能更加科學的呈現(xiàn)出數(shù)據(jù)本身具備的特點,也正是因為這些被全世界統(tǒng)計學家所公認的各種統(tǒng)計方法(可以稱之為真理)才能深入數(shù)據(jù)內部,挖掘出公認的價值。另外一個方面也是因為有這些數(shù)據(jù)挖掘的算法才能更快速的處理大數(shù)據(jù),如果一個算法得花上好幾年才能得出結論,那大數(shù)據(jù)的價值也就無從說起了。

3、預測性分析能力

大數(shù)據(jù)分析最終要的應用領域之一就是預測性分析,從大數(shù)據(jù)中挖掘出特點,通過科學的建立模型,之后便可以通過模型帶入新的數(shù)據(jù),從而預測未來的數(shù)據(jù)。

4、語義引擎

大數(shù)據(jù)分析廣泛應用于網(wǎng)絡數(shù)據(jù)挖掘,可從用戶的搜索關鍵詞、標簽關鍵詞、或其他輸入語義,分析,判斷用戶需求,從而實現(xiàn)更好的用戶體驗和廣告匹配。

5、數(shù)據(jù)質量和數(shù)據(jù)管理

大數(shù)據(jù)分析離不開數(shù)據(jù)質量和數(shù)據(jù)管理,高質量的數(shù)據(jù)和有效的數(shù)據(jù)管理,無論是在學術研究還是在商業(yè)應用領域,都能夠保證分析結果的真實和有價值。 大數(shù)據(jù)分析的基礎就是以上五個方面,當然更加深入大數(shù)據(jù)分析的話,還有很多很多更加有特點的、更加深入的、更加專業(yè)的大數(shù)據(jù)分析方法。


分享文章:php可以大數(shù)據(jù)分析 php 大數(shù)據(jù)處理
網(wǎng)頁地址:http://www.dlmjj.cn/article/hhehci.html