日本综合一区二区|亚洲中文天堂综合|日韩欧美自拍一区|男女精品天堂一区|欧美自拍第6页亚洲成人精品一区|亚洲黄色天堂一区二区成人|超碰91偷拍第一页|日韩av夜夜嗨中文字幕|久久蜜综合视频官网|精美人妻一区二区三区

RELATEED CONSULTING
相關(guān)咨詢
選擇下列產(chǎn)品馬上在線溝通
服務(wù)時間:8:30-17:00
你可能遇到了下面的問題
關(guān)閉右側(cè)工具欄

新聞中心

這里有您想知道的互聯(lián)網(wǎng)營銷解決方案
怎么在python使用OpenCV進行人像分割與合成-創(chuàng)新互聯(lián)

今天就跟大家聊聊有關(guān)怎么在python使用OpenCV進行人像分割與合成,可能很多人都不太了解,為了讓大家更加了解,小編給大家總結(jié)了以下內(nèi)容,希望大家根據(jù)這篇文章可以有所收獲。

站在用戶的角度思考問題,與客戶深入溝通,找到普安網(wǎng)站設(shè)計與普安網(wǎng)站推廣的解決方案,憑借多年的經(jīng)驗,讓設(shè)計與互聯(lián)網(wǎng)技術(shù)結(jié)合,創(chuàng)造個性化、用戶體驗好的作品,建站類型包括:做網(wǎng)站、成都網(wǎng)站設(shè)計、企業(yè)官網(wǎng)、英文網(wǎng)站、手機端網(wǎng)站、網(wǎng)站推廣、主機域名網(wǎng)站空間、企業(yè)郵箱。業(yè)務(wù)覆蓋普安地區(qū)。

實現(xiàn)思路

通過背景建模的方法,對源圖像中的動態(tài)人物前景進行分割,再將目標(biāo)圖像作為背景,進行合成操作,獲得一個可用的合成影像。

實現(xiàn)步驟如下。

使用BackgroundSubtractorMOG2進行背景分割

BackgroundSubtractorMOG2是一個以高斯混合模型為基礎(chǔ)的背景前景分割算法,

混合高斯模型

怎么在python使用OpenCV進行人像分割與合成

分布概率是K個高斯分布的和,每個高斯分布有屬于自己的 μμ 和 σσ 參數(shù),以及對應(yīng)的權(quán)重參數(shù),權(quán)重值必須為正數(shù),所有權(quán)重的和必須等于1,以確保公式給出數(shù)值是合理的概率密度值。換句話說如果我們把該公式對應(yīng)的輸入空間合并起來,結(jié)果將等于1。

回到原算法,它的一個特點是它為每一個像素選擇一個合適數(shù)目的高斯分布?;诟咚鼓P偷钠谕蜆?biāo)準(zhǔn)差來判斷混合高斯模型模型中的哪個高斯模型更有可能對應(yīng)這個像素點,如果不符合就會被判定為前景。

使用人像識別填充面部信息

創(chuàng)建級聯(lián)分類器

face_cascade = cv2.CascadeClassifier()
face_cascade.load(
  '/usr/local/anaconda3/envs/OpenCV/lib/python3.8/site-packages/cv2/data/haarcascade_frontalface_default.xml')

使用OpenCV自帶的級聯(lián)分類器,加載OpenCV的基礎(chǔ)人像識別數(shù)據(jù)。

識別源圖像中的人像

faces = face_cascade.detectMultiScale(gray, 1.3, 5)

使用形態(tài)學(xué)填充分割出來的前景

# 形態(tài)學(xué)開運算去噪點
fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel)
for i in range(15):
  fgmask = cv2.dilate(fgmask, kernel, iterations=1)

通過開操作去掉前景圖像數(shù)組中的噪點,然后重復(fù)進行膨脹,填充前景輪廓。

將人像與目標(biāo)背景進行合成

def resolve(o_img, mask, faces):
  if len(faces) == 0:
    return
  (x, y, w, h) = faces[0]
  rgb_mask_front = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)
  rgb_mask_front = cv2.bitwise_not(rgb_mask_front)
  cv2.circle(rgb_mask_front, (int(x + w / 2), int(y + h / 2)), int((w + h) / 4), (0, 0, 0), thickness=-1)
  o_img = cv2.subtract(o_img, rgb_mask_front)
  return o_img

將分割出來的部分取反再與源圖像進行減操作,相當(dāng)于用一個Mask從原圖中摳出一部分。

再與背景進行加操作

out = resolve(frame, fgmask, faces)
out = cv2.add(out, c_frame)

代碼實現(xiàn)

import numpy as np
import cv2
import os

# 經(jīng)典的測試視頻
camera = cv2.VideoCapture('./source/background_test2.avi')
cap = cv2.VideoCapture('./source/camera_test2.avi')
face_cascade = cv2.CascadeClassifier()
face_cascade.load(
   os.getcwd()+'/source/haarcascade_frontalface_default.xml')
# 形態(tài)學(xué)操作需要使用
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
# 創(chuàng)建混合高斯模型用于背景建模
fgbg = cv2.createBackgroundSubtractorMOG2(detectShadows=False)


def resolve(o_img, mask, faces):
  if len(faces) == 0:
    return
  (x, y, w, h) = faces[0]
  rgb_mask_front = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)
  rgb_mask_front = cv2.bitwise_not(rgb_mask_front)
  cv2.circle(rgb_mask_front, (int(x + w / 2), int(y + h / 2)), int((w + h) / 4), (0, 0, 0), thickness=-1)
  o_img = cv2.subtract(o_img, rgb_mask_front)
  return o_img


while True:
  ret, frame = cap.read()
  c_ret, c_frame = camera.read()
  gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

  fgmask = fgbg.apply(frame)
  # 形態(tài)學(xué)開運算去噪點
  fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel)
  gray_camera = cv2.cvtColor(c_frame, cv2.COLOR_BGR2GRAY)

  for i in range(15):
    fgmask = cv2.dilate(fgmask, kernel, iterations=1)

  faces = face_cascade.detectMultiScale(gray, 1.3, 5)
  out = resolve(frame, fgmask, faces)
  out = cv2.add(out, c_frame)
  cv2.imshow('Result', out)
  cv2.imshow('Mask', fgmask)
  k = cv2.waitKey(150) & 0xff
  if k == 27:
    break
out.release()
camera.release()
cap.release()
cv2.destroyAllWindows()

看完上述內(nèi)容,你們對怎么在python使用OpenCV進行人像分割與合成有進一步的了解嗎?如果還想了解更多知識或者相關(guān)內(nèi)容,請關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道,感謝大家的支持。


本文標(biāo)題:怎么在python使用OpenCV進行人像分割與合成-創(chuàng)新互聯(lián)
網(wǎng)頁地址:http://www.dlmjj.cn/article/dpjosh.html