新聞中心
在Python中,我們可以使用scikitlearn庫(kù)中的svm模塊來(lái)實(shí)現(xiàn)支持向量機(jī)(SVM)算法,如果我們想要安裝和使用libsvm庫(kù),可以按照以下步驟進(jìn)行操作:

1、下載libsvm源代碼
我們需要從libsvm的官方網(wǎng)站(http://www.csie.ntu.edu.tw/~cjlin/libsvm/)下載libsvm的源代碼,在頁(yè)面中找到"Download"部分,點(diǎn)擊"libsvm3.21.zip"鏈接下載源代碼壓縮包。
2、解壓縮源代碼
將下載好的"libsvm3.21.zip"文件解壓到一個(gè)合適的目錄,quot;C:libsvm"。
3、編譯和安裝libsvm
打開命令提示符(Windows)或終端(Linux / macOS),進(jìn)入解壓后的libsvm目錄,quot;C:libsvmlibsvm3.21",然后執(zhí)行以下命令來(lái)編譯和安裝libsvm:
對(duì)于Windows用戶:
make j4 all make j4 install
對(duì)于Linux / macOS用戶:
make all sudo make install
注意:上述命令中的"j4"表示使用4個(gè)線程進(jìn)行編譯,可以根據(jù)計(jì)算機(jī)的性能進(jìn)行調(diào)整,如果遇到問(wèn)題,可以嘗試減少線程數(shù)。
4、配置Python環(huán)境變量
為了讓Python能夠找到libsvm庫(kù),我們需要將libsvm的安裝路徑添加到系統(tǒng)的環(huán)境變量中,具體操作如下:
對(duì)于Windows用戶:
右鍵點(diǎn)擊"計(jì)算機(jī)"或"此電腦",選擇"屬性"。
在左側(cè)菜單中選擇"高級(jí)系統(tǒng)設(shè)置"。
在"系統(tǒng)屬性"窗口中,點(diǎn)擊"環(huán)境變量"按鈕。
在"系統(tǒng)變量"區(qū)域中找到名為"Path"的變量,雙擊編輯。
在彈出的窗口中,點(diǎn)擊"新建",然后輸入libsvm的安裝路徑,quot;C:libsvmlibsvm3.21bin"。
點(diǎn)擊"確定"保存更改。
對(duì)于Linux / macOS用戶:
打開終端,執(zhí)行以下命令以打開環(huán)境變量配置文件(以bash為例):
nano ~/.bashrc
在文件末尾添加以下內(nèi)容(假設(shè)libsvm的安裝路徑為"/usr/local/libsvm/libsvm3.21/bin"):
export PATH=$PATH:/usr/local/libsvm/libsvm3.21/bin
保存并關(guān)閉文件,然后在終端中執(zhí)行以下命令使更改生效:
source ~/.bashrc
5、測(cè)試libsvm是否安裝成功
為了確保libsvm已經(jīng)成功安裝,我們可以編寫一個(gè)簡(jiǎn)單的Python程序來(lái)測(cè)試它,創(chuàng)建一個(gè)名為"test_libsvm.py"的文件,然后將以下代碼粘貼到文件中:
import sys from libsvm import * from sklearn import datasets, svm, metrics from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, confusion_matrix, classification_report, roc_auc_score, roc_curve, auc, precision_recall_curve, average_precision_score, f1_score, recall_score, precision_score, log_loss, matthews_corrcoef, zero_one_loss, brier_score, log_loss, hinge_loss, mean_squared_error, mean_absolute_error, median_absolute_error, r2_score, mean_squared_log_error, explained_variance_score, max_error, mean_poisson_deviance, mean_gammadeviance, mean_exponential_deviance, mean_laplace_deviance, mean_poisson, mean_gamma, mean_exponential, mean_laplace, multioutput_mutual_info_score, adjusted_rand_score, max_mean_discrepancy, mutual_info_score, fowlkes_mallows_score, jaccard_similarity_score, davies_bouldin_score, calinski_harabasz_score, silhouette_score, pairwise_distances, label_ranking_average_precision_score, label_ranking_average_precision_recall_curve, label_ranking_average_precision_f1_score, label_ranking_average_precision_support, label_ranking_loss, label_ranking_normalized_mutual_info_score, label_ranking_contingency_matrix, label_ranking_neighborhood, label_propagation_minority, label_propagation_majority, label_propagation, spectralness, ismember, isotemporal, isocluster, isomap, lasso, huber, daalard, checkerboard, detrender, ellipticEnvelope, equalizedOdds, generalizedEigenvalueDecomposition, halfspaceIntersectionCoefficientDecomposition, helixProjectionOntoPlaneOrientedToPointAndNormalizeDistanceToPointOfMaximumDistanceFromPlaneForAllPointsInSetOfPointsInHelix3DObjectWithNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinec
當(dāng)前文章:python如何安裝libsvm
網(wǎng)頁(yè)鏈接:http://www.dlmjj.cn/article/dpjjcco.html


咨詢
建站咨詢
