日本综合一区二区|亚洲中文天堂综合|日韩欧美自拍一区|男女精品天堂一区|欧美自拍第6页亚洲成人精品一区|亚洲黄色天堂一区二区成人|超碰91偷拍第一页|日韩av夜夜嗨中文字幕|久久蜜综合视频官网|精美人妻一区二区三区

RELATEED CONSULTING
相關(guān)咨詢
選擇下列產(chǎn)品馬上在線溝通
服務(wù)時(shí)間:8:30-17:00
你可能遇到了下面的問題
關(guān)閉右側(cè)工具欄

新聞中心

這里有您想知道的互聯(lián)網(wǎng)營銷解決方案
如何使用OpenAttack進(jìn)行文本對(duì)抗攻擊

關(guān)于OpenAttack

OpenAttack是一款專為文本對(duì)抗攻擊設(shè)計(jì)的開源工具套件,該工具基于Python開發(fā),可以處理文本對(duì)抗攻擊的整個(gè)過程,包括預(yù)處理文本、訪問目標(biāo)用戶模型、生成對(duì)抗示例和評(píng)估攻擊模型等等。

網(wǎng)站建設(shè)哪家好,找創(chuàng)新互聯(lián)建站!專注于網(wǎng)頁設(shè)計(jì)、網(wǎng)站建設(shè)、微信開發(fā)、微信平臺(tái)小程序開發(fā)、集團(tuán)企業(yè)網(wǎng)站建設(shè)等服務(wù)項(xiàng)目。為回饋新老客戶創(chuàng)新互聯(lián)還提供了涉縣免費(fèi)建站歡迎大家使用!

功能&使用

OpenAttack支持以下幾種功能:

  • 高可用性:OpenAttack提供了易于使用的API,可以支持文本對(duì)抗攻擊的整個(gè)過程;
  • 全面覆蓋攻擊模型類型:OpenAttack支持句子/單詞/字符級(jí)擾動(dòng)和梯度/分?jǐn)?shù)/基于決策/盲攻擊模型;
  • 靈活性強(qiáng)&可擴(kuò)展:我們可以輕松攻擊定制目標(biāo)用戶模型,或開發(fā)和評(píng)估定制的攻擊模型;
  • 綜合評(píng)估:OpenAttack可以從攻擊有效性、對(duì)抗示例質(zhì)量和攻擊效率等方面全面評(píng)估攻擊模型;

OpenAttack的使用范圍非常廣,其中包括但不限于:

  • 為攻擊模型提供各種評(píng)估基線;
  • 使用其全面評(píng)估指標(biāo)綜合評(píng)估攻擊模型;
  • 借助通用攻擊組件,協(xié)助快速開發(fā)新的攻擊模型;
  • 評(píng)估機(jī)器學(xué)習(xí)模型對(duì)各種對(duì)抗攻擊的魯棒性;
  • 通過使用生成的對(duì)抗示例豐富訓(xùn)練數(shù)據(jù),進(jìn)行對(duì)抗訓(xùn)練以提高機(jī)器學(xué)習(xí)模型的魯棒性;

工具模塊

工具安裝

我們可以使用pip安裝,或者克隆該項(xiàng)目源碼來安裝OpenAttack。

使用pip安裝(推薦):

 
 
 
  1. pip install OpenAttack 

克隆代碼庫:

 
 
 
  1. git clone https://github.com/thunlp/OpenAttack.git 
  2. cd OpenAttack  
  3. python setup.py install 

安裝完成之后,我們可以嘗試運(yùn)行“demo.py”來檢測(cè)OpenAttack是否能夠正常工作:

使用樣例

(1) 基礎(chǔ)使用:使用內(nèi)置攻擊模型

OpenAttack內(nèi)置了一些常用的文本分類模型,如LSTM和BERT,以及用于情感分析的SST和用于自然語言推理的SNLI等數(shù)據(jù)集。

以下代碼段顯示了如何使用基于遺傳算法的攻擊模型攻擊SST數(shù)據(jù)集上的BERT:

 
 
 
  1. import OpenAttack as oa  
  2. # choose a trained victim classification model  
  3. victim = oa.DataManager.load("Victim.BERT.SST")  
  4. # choose an evaluation dataset  
  5. dataset = oa.DataManager.load("Dataset.SST.sample")  
  6. # choose Genetic as the attacker and initialize it with default parameters  
  7. attacker = oa.attackers.GeneticAttacker()  
  8. # prepare for attacking  
  9. attack_eval = oa.attack_evals.DefaultAttackEval(attacker, victim)  
  10. # launch attacks and print attack results  
  11. attack_eval.eval(dataset, visualize=True) 

(2) 高級(jí)使用:攻擊自定義目標(biāo)用戶模型

下面的代碼段顯示了如何使用基于遺傳算法的攻擊模型攻擊SST上的自定義情緒分析模型:

 
 
 
  1. import OpenAttack as oa  
  2. import numpy as np  
  3. from nltk.sentiment.vader import SentimentIntensityAnalyzer 
  4.  
  5.    
  6. # configure access interface of the customized victim model  
  7. class MyClassifier(oa.Classifier):  
  8.     def __init__(self):  
  9.         self.model = SentimentIntensityAnalyzer()  
  10.     # access to the classification probability scores with respect input sentences  
  11.     def get_prob(self, input_):  
  12.         rt = []  
  13.         for sent in input_:  
  14.             rs = self.model.polarity_scores(sent)  
  15.             prob = rs["pos"] / (rs["neg"] + rs["pos"])  
  16.             rt.append(np.array([1 - prob, prob]))  
  17.         return np.array(rt)  
  18. # choose the costomized classifier as the victim model  
  19. victim = MyClassifier()  
  20. # choose an evaluation dataset 
  21. dataset = oa.DataManager.load("Dataset.SST.sample")  
  22. # choose Genetic as the attacker and initialize it with default parameters  
  23. attacker = oa.attackers.GeneticAttacker()  
  24. # prepare for attacking  
  25. attack_eval = oa.attack_evals.DefaultAttackEval(attacker, victim)  
  26. # launch attacks and print attack results  
  27. attack_eval.eval(dataset, visualize=True) 

項(xiàng)目地址

OpenAttack:【GitHub傳送門】


本文標(biāo)題:如何使用OpenAttack進(jìn)行文本對(duì)抗攻擊
標(biāo)題路徑:http://www.dlmjj.cn/article/dpipgge.html