新聞中心
對(duì)數(shù)據(jù)科學(xué)家來(lái)說(shuō),講故事是一個(gè)至關(guān)重要的技能。為了表達(dá)我們的思想并且說(shuō)服別人,我們需要有效的溝通。而漂漂亮亮的可視化是完成這一任務(wù)的絕佳工具。

創(chuàng)新互聯(lián)公司主營(yíng)莒縣網(wǎng)站建設(shè)的網(wǎng)絡(luò)公司,主營(yíng)網(wǎng)站建設(shè)方案,app軟件開(kāi)發(fā),莒縣h5重慶小程序開(kāi)發(fā)搭建,莒縣網(wǎng)站營(yíng)銷推廣歡迎莒縣等地區(qū)企業(yè)咨詢
本文將介紹5種非傳統(tǒng)的可視化技術(shù),可讓你的數(shù)據(jù)故事更漂亮和更有效。這里將使用Python的Plotly圖形庫(kù),讓你可以毫不費(fèi)力地生成動(dòng)畫(huà)圖表和交互式圖表。
安裝模塊
如果你還沒(méi)安裝 Plotly,只需在你的終端運(yùn)行以下命令即可完成安裝:
pip install plotly
可視化動(dòng)態(tài)圖
在研究這個(gè)或那個(gè)指標(biāo)的演變時(shí),我們常涉及到時(shí)間數(shù)據(jù)。Plotly動(dòng)畫(huà)工具僅需一行代碼就能讓人觀看數(shù)據(jù)隨時(shí)間的變化情況,如下圖所示:
代碼如下:
import plotly.express as px
from vega_datasets import data
df = data.disasters()
df = df[df.Year > 1990]
fig = px.bar(df,
y="Entity",
x="Deaths",
animation_frame="Year",
orientation='h',
range_x=[0, df.Deaths.max()],
color="Entity")
# improve aesthetics (size, grids etc.)
fig.update_layout(width=1000,
height=800,
xaxis_showgrid=False,
yaxis_showgrid=False,
paper_bgcolor='rgba(0,0,0,0)',
plot_bgcolor='rgba(0,0,0,0)',
title_text='Evolution of Natural Disasters',
showlegend=False)
fig.update_xaxes(title_text='Number of Deaths')
fig.update_yaxes(title_text='')
fig.show()
只要你有一個(gè)時(shí)間變量來(lái)過(guò)濾,那么幾乎任何圖表都可以做成動(dòng)畫(huà)。下面是一個(gè)制作散點(diǎn)圖動(dòng)畫(huà)的例子:
import plotly.express as px
df = px.data.gapminder()
fig = px.scatter(
df,
x="gdpPercap",
y="lifeExp",
animation_frame="year",
size="pop",
color="continent",
hover_name="country",
log_x=True,
size_max=55,
range_x=[100, 100000],
range_y=[25, 90],
# color_continuous_scale=px.colors.sequential.Emrld
)
fig.update_layout(width=1000,
height=800,
xaxis_showgrid=False,
yaxis_showgrid=False,
paper_bgcolor='rgba(0,0,0,0)',
plot_bgcolor='rgba(0,0,0,0)')
太陽(yáng)圖
太陽(yáng)圖(sunburst chart)是一種可視化group by語(yǔ)句的好方法。如果你想通過(guò)一個(gè)或多個(gè)類別變量來(lái)分解一個(gè)給定的量,那就用太陽(yáng)圖吧。
假設(shè)我們想根據(jù)性別和每天的時(shí)間分解平均小費(fèi)數(shù)據(jù),那么相較于表格,這種雙重group by語(yǔ)句可以通過(guò)可視化來(lái)更有效地展示。
這個(gè)圖表是交互式的,讓你可以自己點(diǎn)擊并探索各個(gè)類別。你只需要定義你的所有類別,并聲明它們之間的層次結(jié)構(gòu)(見(jiàn)以下代碼中的parents參數(shù))并分配對(duì)應(yīng)的值即可,這在我們案例中即為group by語(yǔ)句的輸出。
import plotly.graph_objects as go
import plotly.express as px
import numpy as np
import pandas as pd
df = px.data.tips()
fig = go.Figure(go.Sunburst(
labels=["Female", "Male", "Dinner", "Lunch", 'Dinner ', 'Lunch '],
parents=["", "", "Female", "Female", 'Male', 'Male'],
values=np.append(
df.groupby('sex').tip.mean().values,
df.groupby(['sex', 'time']).tip.mean().values),
marker=dict(colors=px.colors.sequential.Emrld)),
layout=go.Layout(paper_bgcolor='rgba(0,0,0,0)',
plot_bgcolor='rgba(0,0,0,0)'))
fig.update_layout(margin=dict(t=0, l=0, r=0, b=0),
title_text='Tipping Habbits Per Gender, Time and Day')
fig.show()
現(xiàn)在我們向這個(gè)層次結(jié)構(gòu)再添加一層:
為此,我們?cè)偬砑恿硪粋€(gè)涉及三個(gè)類別變量的group by語(yǔ)句的值。
import plotly.graph_objects as go
import plotly.express as px
import pandas as pd
import numpy as np
df = px.data.tips()
fig = go.Figure(go.Sunburst(labels=[
"Female", "Male", "Dinner", "Lunch", 'Dinner ', 'Lunch ', 'Fri', 'Sat',
'Sun', 'Thu', 'Fri ', 'Thu ', 'Fri ', 'Sat ', 'Sun ', 'Fri ', 'Thu '
],
parents=[
"", "", "Female", "Female", 'Male', 'Male',
'Dinner', 'Dinner', 'Dinner', 'Dinner',
'Lunch', 'Lunch', 'Dinner ', 'Dinner ',
'Dinner ', 'Lunch ', 'Lunch '
],
values=np.append(
np.append(
df.groupby('sex').tip.mean().values,
df.groupby(['sex',
'time']).tip.mean().values,
),
df.groupby(['sex', 'time',
'day']).tip.mean().values),
marker=dict(colors=px.colors.sequential.Emrld)),
layout=go.Layout(paper_bgcolor='rgba(0,0,0,0)',
plot_bgcolor='rgba(0,0,0,0)'))
fig.update_layout(margin=dict(t=0, l=0, r=0, b=0),
title_text='Tipping Habbits Per Gender, Time and Day')
fig.show()
指針圖
指針圖僅僅是為了好看。在報(bào)告 KPI 等成功指標(biāo)并展示其與你的目標(biāo)的距離時(shí),可以使用這種圖表。
import plotly.graph_objects as go
fig = go.Figure(go.Indicator(
domain = {'x': [0, 1], 'y': [0, 1]},
value = 4.3,
mode = "gauge+number+delta",
title = {'text': "Success Metric"},
delta = {'reference': 3.9},
gauge = {'bar': {'color': "lightgreen"},
'axis': {'range': [None, 5]},
'steps' : [
{'range': [0, 2.5], 'color': "lightgray"},
{'range': [2.5, 4], 'color': "gray"}],
}))
fig.show()
?;鶊D
另一種探索類別變量之間關(guān)系的方法是以下這種平行坐標(biāo)圖。你可以隨時(shí)拖放、高亮和瀏覽值,非常適合演示時(shí)使用。
代碼如下:
import plotly.express as px
from vega_datasets import data
import pandas as pd
df = data.movies()
df = df.dropna()
df['Genre_id'] = df.Major_Genre.factorize()[0]
fig = px.parallel_categories(
df,
dimensions=['MPAA_Rating', 'Creative_Type', 'Major_Genre'],
color="Genre_id",
color_continuous_scale=px.colors.sequential.Emrld,
)
fig.show()
平行坐標(biāo)圖
平行坐標(biāo)圖是上面的圖表的衍生版本。這里,每一根弦都代表單個(gè)觀察。這是一種可用于識(shí)別離群值(遠(yuǎn)離其它數(shù)據(jù)的單條線)、聚類、趨勢(shì)和冗余變量(比如如果兩個(gè)變量在每個(gè)觀察上的值都相近,那么它們將位于同一水平線上,表示存在冗余)的好用工具。
代碼如下:
import plotly.express as px
from vega_datasets import data
import pandas as pd
df = data.movies()
df = df.dropna()
df['Genre_id'] = df.Major_Genre.factorize()[0]
fig = px.parallel_coordinates(
df,
dimensions=[
'IMDB_Rating', 'IMDB_Votes', 'Production_Budget', 'Running_Time_min',
'US_Gross', 'Worldwide_Gross', 'US_DVD_Sales'
],
color='IMDB_Rating',
color_continuous_scale=px.colors.sequential.Emrld)
fig.show()
網(wǎng)頁(yè)名稱:用Python繪制動(dòng)態(tài)可視化圖表,太酷了!
分享地址:http://www.dlmjj.cn/article/dpepeoi.html


咨詢
建站咨詢
