日本综合一区二区|亚洲中文天堂综合|日韩欧美自拍一区|男女精品天堂一区|欧美自拍第6页亚洲成人精品一区|亚洲黄色天堂一区二区成人|超碰91偷拍第一页|日韩av夜夜嗨中文字幕|久久蜜综合视频官网|精美人妻一区二区三区

RELATEED CONSULTING
相關(guān)咨詢(xún)
選擇下列產(chǎn)品馬上在線溝通
服務(wù)時(shí)間:8:30-17:00
你可能遇到了下面的問(wèn)題
關(guān)閉右側(cè)工具欄

新聞中心

這里有您想知道的互聯(lián)網(wǎng)營(yíng)銷(xiāo)解決方案
2022年十個(gè)用于時(shí)間序列分析的Python庫(kù)推薦

時(shí)間序列是數(shù)據(jù)點(diǎn)的序列,通常由在一段時(shí)間間隔內(nèi)進(jìn)行的連續(xù)測(cè)量組成。時(shí)間序列分析是使用統(tǒng)計(jì)技術(shù)對(duì)時(shí)間序列數(shù)據(jù)進(jìn)行建模和分析,以便從中提取有意義的信息并做出預(yù)測(cè)的過(guò)程。

十多年的老河口網(wǎng)站建設(shè)經(jīng)驗(yàn),針對(duì)設(shè)計(jì)、前端、開(kāi)發(fā)、售后、文案、推廣等六對(duì)一服務(wù),響應(yīng)快,48小時(shí)及時(shí)工作處理。全網(wǎng)營(yíng)銷(xiāo)推廣的優(yōu)勢(shì)是能夠根據(jù)用戶(hù)設(shè)備顯示端的尺寸不同,自動(dòng)調(diào)整老河口建站的顯示方式,使網(wǎng)站能夠適用不同顯示終端,在瀏覽器中調(diào)整網(wǎng)站的寬度,無(wú)論在任何一種瀏覽器上瀏覽網(wǎng)站,都能展現(xiàn)優(yōu)雅布局與設(shè)計(jì),從而大程度地提升瀏覽體驗(yàn)。創(chuàng)新互聯(lián)從事“老河口網(wǎng)站設(shè)計(jì)”,“老河口網(wǎng)站推廣”以來(lái),每個(gè)客戶(hù)項(xiàng)目都認(rèn)真落實(shí)執(zhí)行。

時(shí)間序列分析是一個(gè)強(qiáng)大的工具,可以用來(lái)從數(shù)據(jù)中提取有價(jià)值的信息,并對(duì)未來(lái)的事件做出預(yù)測(cè)。它可以用來(lái)識(shí)別趨勢(shì)、季節(jié)模式和變量之間的其他關(guān)系。時(shí)間序列分析還可以用來(lái)預(yù)測(cè)未來(lái)的事件,如銷(xiāo)售、需求或價(jià)格變動(dòng)。

如果你正在使用Python處理時(shí)間序列數(shù)據(jù),那么有許多不同的庫(kù)可以選擇。所以在本文中,我們將整理Python中最流行處理時(shí)間序列的庫(kù)。

Sktime

Sktime是一個(gè)用于處理時(shí)間序列數(shù)據(jù)的Python庫(kù)。它提供了一組處理時(shí)間序列數(shù)據(jù)的工具,包括用于處理、可視化和分析數(shù)據(jù)的工具。Sktime的設(shè)計(jì)是易于使用和可擴(kuò)展的,這樣新的時(shí)間序列算法就可以很容易地實(shí)現(xiàn)并且進(jìn)行集成。

Sktime正如其名,它支持scikit-learn API,包含了有效解決涉及時(shí)間序列回歸、預(yù)測(cè)和分類(lèi)問(wèn)題的所有必要方法和工具。該庫(kù)包含專(zhuān)門(mén)的機(jī)器學(xué)習(xí)算法以及時(shí)間序列的獨(dú)特的轉(zhuǎn)換方法,在其他庫(kù)中并沒(méi)有提供,所以Sktime可以作為一個(gè)非常好的基礎(chǔ)庫(kù)。

根據(jù)sktime的文檔,“我們的目標(biāo)是使時(shí)間序列分析生態(tài)系統(tǒng)作為一個(gè)整體更具互操作性和可用性。Sktime為不同但相關(guān)的時(shí)間序列學(xué)習(xí)任務(wù)提供了統(tǒng)一的接口。它的特點(diǎn)是專(zhuān)門(mén)的時(shí)間序列算法和工具,用于組合模型的構(gòu)建,包括流水線管道、集成、調(diào)優(yōu)和簡(jiǎn)化,使用戶(hù)可以將一個(gè)任務(wù)的算法應(yīng)用到另一個(gè)任務(wù)。

sktime還提供與相關(guān)庫(kù)的接口,例如scikit-learn、statsmodels、tsfresh、PyOD和[fbprophet]等等?!?/p>

下面是一個(gè)代碼樣例

from sktime.datasets import load_airline
from sktime.forecasting.model_selection import temporal_train_test_split

# from sktime.utils.plotting.forecasting import plot_ys

y = load_airline()
y_train, y_test = temporal_train_test_split(y)
plt.title('Airline Data with Train and Test')
y_train.plot(label = 'train')
y_test.plot(label = 'test')
plt.legend()

pmdarima

pmdarima是一個(gè)用于時(shí)間序列數(shù)據(jù)統(tǒng)計(jì)分析的Python庫(kù)。它基于ARIMA模型并且提供了各種分析、預(yù)測(cè)和可視化時(shí)間序列數(shù)據(jù)的工具。Pmdarima還提供了處理季節(jié)性數(shù)據(jù)的各種工具,包括季節(jié)性測(cè)試和季節(jié)性分解工具。

在時(shí)間序列分析中經(jīng)常使用的預(yù)測(cè)模型之一是ARIMA(自回歸綜合移動(dòng)平均)。ARIMA是一種預(yù)測(cè)算法,可以根據(jù)時(shí)間序列的過(guò)去值中的信息來(lái)預(yù)測(cè)未來(lái)的值。

pmdarima是ARIMA模型的包裝器,它自帶一個(gè)自動(dòng)超參數(shù)搜索函數(shù),可以自動(dòng)為ARIMA模型找到最佳超參數(shù)(p,d,q)。該庫(kù)包括下面一些主要的功能點(diǎn):

  • 一組關(guān)于平穩(wěn)性和季節(jié)性的統(tǒng)計(jì)測(cè)試
  • 時(shí)間序列效用,如差分和逆差分
  • 眾多的內(nèi)生和外生轉(zhuǎn)換器和特征化器,包括Box-Cox和傅立葉變換
  • 季節(jié)時(shí)間序列分解
  • 交叉驗(yàn)證工具
  • 內(nèi)置一個(gè)豐富的可用于原型和示例的時(shí)間序列數(shù)據(jù)集集合

AutoTS

顧名思義,它是一個(gè)用于自動(dòng)時(shí)間序列分析的 Python 庫(kù)。AutoTS 允許我們用一行代碼訓(xùn)練多個(gè)時(shí)間序列模型,以便我們可以選擇最適合的模型。

該庫(kù)是 autoML 的一部分,其目標(biāo)是為初學(xué)者提供自動(dòng)化庫(kù)。

TSFresh

tsfresh是一個(gè)可以自動(dòng)從時(shí)間序列中提取特征的Python包。它基于時(shí)間序列中的信息可以分解為一組有意義的特征來(lái)實(shí)現(xiàn)的。tsfresh 負(fù)責(zé)手動(dòng)提取這些特征的繁瑣任務(wù),并提供自動(dòng)特征選擇和分類(lèi)的工具。它可以與 pandas DataFrames 一起使用,并提供廣泛的用于處理時(shí)間序列數(shù)據(jù)的函數(shù),包括:

  • 從時(shí)間序列中自動(dòng)提取特征
  • 自動(dòng)特征選擇
  • 時(shí)間序列分解
  • 降維
  • 異常值檢測(cè)
  • 支持多種時(shí)間序列格式
  • 支持缺失值
  • 支持多種語(yǔ)言

Prophet

Prophet是由Facebook核心數(shù)據(jù)科學(xué)團(tuán)隊(duì)發(fā)布的開(kāi)源軟件。它基于一個(gè)相加模型,其中非線性趨勢(shì)適合每年、每周和每日的季節(jié)性,加上假日效應(yīng)。它最適合具有強(qiáng)烈季節(jié)性效應(yīng)的時(shí)間序列和幾個(gè)季節(jié)的歷史數(shù)據(jù)。Prophet對(duì)于缺失的數(shù)據(jù)和趨勢(shì)的變化具有很強(qiáng)的魯棒性,通常能夠很好地處理異常值。

根據(jù)官方文檔,fbprophet在處理具有顯著季節(jié)性影響的時(shí)間序列數(shù)據(jù)和幾個(gè)季節(jié)價(jià)值的之前數(shù)據(jù)時(shí)工作得非常好。此外fbprophet能夠抵抗缺失數(shù)據(jù),并能夠有效地管理異常值。

Statsforecast

Statsforecast提供了一組廣泛使用的單變量時(shí)間序列預(yù)測(cè)模型,包括自動(dòng)ARIMA和ETS建模并使用numba優(yōu)化。它還包括大量的基準(zhǔn)測(cè)試模型。根據(jù)官網(wǎng)的介紹:

  • Python和R中最快最準(zhǔn)確的AutoARIMA。
  • Python和R中最快最準(zhǔn)確的ETS。
  • 兼容sklearn接口。
  • ARIMA的外生變量和預(yù)測(cè)區(qū)間的包含。
  • 比pmdarima快20倍,比Prophet快500倍,比NeuralProphet快100倍,比statmodels快4倍。
  • 通過(guò)numba編譯為高性能機(jī)器代碼。
  • 開(kāi)箱即用的實(shí)現(xiàn)ADIDA, HistoricAverage, CrostonClassic, CrostonSBA, CrostonOptimized, seasonalwindowaaverage, SeasonalNaive, IMAPA Naive, RandomWalkWithDrift, windowaaverage, SeasonalExponentialSmoothing, TSB, AutoARIMA和ETS。

kats

Kats 是 Facebook 研究團(tuán)隊(duì)最近開(kāi)發(fā)的另一個(gè)專(zhuān)門(mén)處理時(shí)間序列數(shù)據(jù)的庫(kù)。該框架的目標(biāo)是為解決時(shí)間序列問(wèn)題提供一個(gè)完整的解決方案。使用此庫(kù),我們可以執(zhí)行以下操作:

  • 時(shí)間序列分析
  • 模式檢測(cè),包括季節(jié)性、異常值、趨勢(shì)變化
  • 產(chǎn)生65個(gè)特征的特征工程模塊
  • 對(duì)時(shí)間序列數(shù)據(jù)建立預(yù)測(cè)模型,包括Prophet、ARIMA、Holt Winters等。

Darts

Darts 是由 Unit8.co 開(kāi)發(fā)的用于預(yù)測(cè)時(shí)間序列,并且對(duì)scikit-learn 友好 的Python 包。它包含大量模型,從 ARIMA 到深度神經(jīng)網(wǎng)絡(luò),用于處理與日期和時(shí)間相關(guān)的數(shù)據(jù)。

該庫(kù)的好處在于它還支持用于處理神經(jīng)網(wǎng)絡(luò)的多維類(lèi)。

它還允許用戶(hù)結(jié)合來(lái)自多個(gè)模型和外部回歸模型的預(yù)測(cè),從而更容易地對(duì)模型進(jìn)行回測(cè)。

Pyflux

Pyflux 是一個(gè)為 Python 構(gòu)建的開(kāi)源時(shí)間序列庫(kù)。Pyflux選擇了更多的概率方法來(lái)解決時(shí)間序列問(wèn)題。這種方法對(duì)于需要更完整的不確定性的預(yù)測(cè)這樣的任務(wù)特別有利。

用戶(hù)可以建立一個(gè)概率模型,其中通過(guò)聯(lián)合概率將數(shù)據(jù)和潛在變量視為隨機(jī)變量。

PyCaret

PyCaret是一個(gè)基于Python的開(kāi)源、低代碼的機(jī)器學(xué)習(xí)庫(kù),它是一個(gè)端到端機(jī)器學(xué)習(xí)和模型管理工具,可以成倍地加快實(shí)驗(yàn)周期,讓工作效率更高。

與其他開(kāi)源機(jī)器學(xué)習(xí)庫(kù)相比,PyCaret是一個(gè)可替代的低代碼庫(kù),可以只用幾行代碼替換數(shù)百行代碼。這使得實(shí)驗(yàn)的速度和效率呈指數(shù)級(jí)增長(zhǎng)。PyCaret本質(zhì)上是scikit-learn、XGBoost、LightGBM、CatBoost、spacacy、Optuna、Hyperopt、Ray等幾個(gè)機(jī)器學(xué)習(xí)庫(kù)和框架的Python包裝。

雖然PyCaret不是一個(gè)專(zhuān)門(mén)的時(shí)間序列預(yù)測(cè)庫(kù),但它有一個(gè)專(zhuān)門(mén)用于時(shí)間序列預(yù)測(cè)的新模塊。它仍然處于預(yù)發(fā)布狀態(tài),但是安裝時(shí)需要使用以下代碼進(jìn)行安裝才能使用新的模塊

pip install --pre pycaret

PyCaret時(shí)間序列模塊與現(xiàn)有的API一致,并且可以使用完整的功能,例如:統(tǒng)計(jì)測(cè)試、模型訓(xùn)練和選擇(30+算法模型)、模型分析、自動(dòng)超參數(shù)調(diào)優(yōu)、實(shí)驗(yàn)日志、云部署等。所有這些都只用了幾行代碼就完成了。

總結(jié)

Python中有許多可用的時(shí)間序列預(yù)測(cè)庫(kù)(比我們?cè)谶@里介紹的更多)。每個(gè)庫(kù)都有自己的優(yōu)缺點(diǎn),因此根據(jù)自己的需要選擇合適的是很重要的。如果你有什么更好的推薦,請(qǐng)留言告訴我們。


新聞標(biāo)題:2022年十個(gè)用于時(shí)間序列分析的Python庫(kù)推薦
鏈接URL:http://www.dlmjj.cn/article/dpeepig.html