新聞中心
在python中除了編程化的知識點外,對于數(shù)學(xué)方法的算法也有所涉及,SVM就是一種很好地體現(xiàn)。我們學(xué)習(xí)過數(shù)學(xué)中的坐標方法,分別是點、線、面連接成圖形,SVM也繼承了這方面的畫圖方法。下面我們學(xué)習(xí)SVM的有關(guān)概念,然后就其核心代碼進行分析,體會SVM的使用原理。

創(chuàng)新互聯(lián)是一家專注于成都網(wǎng)站設(shè)計、網(wǎng)站制作與策劃設(shè)計,良慶網(wǎng)站建設(shè)哪家好?創(chuàng)新互聯(lián)做網(wǎng)站,專注于網(wǎng)站建設(shè)十余年,網(wǎng)設(shè)計領(lǐng)域的專業(yè)建站公司;建站業(yè)務(wù)涵蓋:良慶等地區(qū)。良慶做網(wǎng)站價格咨詢:028-86922220
1.概念理解
“支持向量機”(SVM)是一種監(jiān)督機器學(xué)習(xí)算法,可用于分類或回歸挑戰(zhàn)。然而,它主要用于分類問題。在這個算法中,我們將每一個數(shù)據(jù)項作為一個點在n維空間中(其中n是你擁有的特征數(shù))作為一個點,每一個特征值都是一個特定坐標的值。然后,我們通過查找區(qū)分這兩個類的超平面來進行分類。
2.核心代碼
模型本身并不難,就是要畫出相應(yīng)的圖
clf = SVC(kernel = "linear").fit(X,y) print(clf.predict(X))
預(yù)測又對X自己預(yù)測了一變。按照核心代碼依舊延續(xù)sklearn的風(fēng)格,十分簡單。
可視化可能優(yōu)點麻煩,需要用到下面這個函數(shù)。這個函數(shù)只需輸入clf即可。
def plot_svc_decision_function(model,ax=None): if ax is None: ax = plt.gca() xlim = ax.get_xlim() ylim = ax.get_ylim() x = np.linspace(xlim[0],xlim[1],30) y = np.linspace(ylim[0],ylim[1],30) Y,X = np.meshgrid(y,x) xy = np.vstack([X.ravel(), Y.ravel()]).T #decision_function這個函數(shù)可以返回給定的x,y點到?jīng)Q策邊界(也就是點到SVM所得到劃分線的距離) P = model.decision_function(xy).reshape(X.shape) ax.contour(X, Y, P,colors="k",levels=[-1,0,1],alpha=0.5,linestyles=["--","-","--"]) ax.set_xlim(xlim) ax.set_ylim(ylim)
函數(shù)大概思路就是首先生成一個網(wǎng)格,然后計算網(wǎng)格中各個點到?jīng)Q策邊界的距離,最后繪制等高線(算出的距離相等的一條線)。
以上就是SVM在python中的原理分析,大家在理解了SVM的基礎(chǔ)使用后,可以展開對核心代碼的練習(xí),找到使用SVM畫圖的關(guān)鍵實現(xiàn)方法。
(推薦操作系統(tǒng):windows7系統(tǒng)、Python 3.9.1,DELL G3電腦。)
新聞標題:創(chuàng)新互聯(lián)Python教程:SVM在python中的原理如何理解?
文章來源:http://www.dlmjj.cn/article/djgdcds.html


咨詢
建站咨詢
