日本综合一区二区|亚洲中文天堂综合|日韩欧美自拍一区|男女精品天堂一区|欧美自拍第6页亚洲成人精品一区|亚洲黄色天堂一区二区成人|超碰91偷拍第一页|日韩av夜夜嗨中文字幕|久久蜜综合视频官网|精美人妻一区二区三区

RELATEED CONSULTING
相關(guān)咨詢
選擇下列產(chǎn)品馬上在線溝通
服務(wù)時(shí)間:8:30-17:00
你可能遇到了下面的問題
關(guān)閉右側(cè)工具欄

新聞中心

這里有您想知道的互聯(lián)網(wǎng)營(yíng)銷解決方案
非常實(shí)用的Python庫(kù)

 Python 是一個(gè)很棒的語言。它是世界上發(fā)展最快的編程語言之一。它一次又一次地證明了在開發(fā)人員職位中和跨行業(yè)的數(shù)據(jù)科學(xué)職位中的實(shí)用性。整個(gè) Python 及其庫(kù)的生態(tài)系統(tǒng)使它成為全世界用戶(初學(xué)者和高級(jí)用戶)的合適選擇。它的成功和流行的原因之一是它強(qiáng)大的第三方庫(kù)的集合,這些庫(kù)使它可以保持活力和高效。

專注于為中小企業(yè)提供網(wǎng)站制作、網(wǎng)站設(shè)計(jì)服務(wù),電腦端+手機(jī)端+微信端的三站合一,更高效的管理,為中小企業(yè)洛浦免費(fèi)做網(wǎng)站提供優(yōu)質(zhì)的服務(wù)。我們立足成都,凝聚了一批互聯(lián)網(wǎng)行業(yè)人才,有力地推動(dòng)了上1000家企業(yè)的穩(wěn)健成長(zhǎng),幫助中小企業(yè)通過網(wǎng)站建設(shè)實(shí)現(xiàn)規(guī)模擴(kuò)充和轉(zhuǎn)變。

在本文中,我們會(huì)研究一些用于數(shù)據(jù)科學(xué)任務(wù)的 Python 庫(kù),而不是常見的比如 panda、scikit-learn 和 matplotlib 等的庫(kù)。盡管像 panda 和 scikit-learn 這樣的庫(kù),是在機(jī)器學(xué)習(xí)任務(wù)中經(jīng)常出現(xiàn)的,但是了解這個(gè)領(lǐng)域中的其它 Python 產(chǎn)品總是很有好處的。

Wget

從網(wǎng)絡(luò)上提取數(shù)據(jù)是數(shù)據(jù)科學(xué)家的重要任務(wù)之一。Wget 是一個(gè)免費(fèi)的實(shí)用程序,可以用于從網(wǎng)絡(luò)上下載非交互式的文件。它支持 HTTP、HTTPS 和 FTP 協(xié)議,以及通過 HTTP 的代理進(jìn)行文件檢索。由于它是非交互式的,即使用戶沒有登錄,它也可以在后臺(tái)工作。所以下次當(dāng)你想要下載一個(gè)網(wǎng)站或者一個(gè)頁(yè)面上的所有圖片時(shí),wget 可以幫助你。安裝:

 
 
 
 
  1. $ pip install wget

例子:

 
 
 
 
  1. import wget 
  2. url = 'http://www.futurecrew.com/skaven/song_files/mp3/razorback.mp3' 
  3. filename = wget.download(url) 
  4. 100% [................................................] 3841532 / 3841532 
  5. filename 
  6. 'razorback.mp3' 
  7. ### Pendulum

對(duì)于那些在 python 中處理日期時(shí)間時(shí)會(huì)感到沮喪的人來說,Pendulum 很適合你。它是一個(gè)簡(jiǎn)化日期時(shí)間操作的 Python 包。它是 Python 原生類的簡(jiǎn)易替代。請(qǐng)參閱文檔深入學(xué)習(xí)。

安裝:

 
 
 
 
  1. $ pip install pendulum

例子:

 
 
 
 
  1. import pendulum 
  2. dt_toronto = pendulum.datetime(2012, 1, 1, tz='America/Toronto') 
  3. dt_vancouver = pendulum.datetime(2012, 1, 1, tz='America/Vancouver') 
  4. print(dt_vancouver.diff(dt_toronto).in_hours()) 

imbalanced-learn

可以看出,當(dāng)每個(gè)類的樣本數(shù)量基本相同時(shí),大多數(shù)分類算法的效果是最好的,即需要保持?jǐn)?shù)據(jù)平衡。但現(xiàn)實(shí)案例中大多是不平衡的數(shù)據(jù)集,這些數(shù)據(jù)集對(duì)機(jī)器學(xué)習(xí)算法的學(xué)習(xí)階段和后續(xù)預(yù)測(cè)都有很大影響。幸運(yùn)的是,這個(gè)庫(kù)就是用來解決此問題的。它與 scikit-learn 兼容,是 scikit-lear-contrib 項(xiàng)目的一部分。下次當(dāng)你遇到不平衡的數(shù)據(jù)集時(shí),請(qǐng)嘗試使用它。

安裝:

 
 
 
 
  1. pip install -U imbalanced-learn 
  2. # 或者 
  3. conda install -c conda-forge imbalanced-learn

例子:

使用方法和例子請(qǐng)參考文檔。

FlashText

在 NLP 任務(wù)中,清理文本數(shù)據(jù)往往需要替換句子中的關(guān)鍵字或從句子中提取關(guān)鍵字。通常,這種操作可以使用正則表達(dá)式來完成,但是如果要搜索的術(shù)語數(shù)量達(dá)到數(shù)千個(gè),這就會(huì)變得很麻煩。Python 的 FlashText 模塊是基于 FlashText 算法為這種情況提供了一個(gè)合適的替代方案。FlashText 最棒的一點(diǎn)是,不管搜索詞的數(shù)量如何,運(yùn)行時(shí)間都是相同的。你可以在這里了解更多內(nèi)容。

安裝:

 
 
 
 
  1. $ pip install flashtext

例子:

提取關(guān)鍵字

 
 
 
 
  1. from flashtext import KeywordProcessor 
  2. keyword_processor = KeywordProcessor() 
  3. # keyword_processor.add_keyword(
  4. keyword_processor.add_keyword('Big Apple', 'New York') 
  5. keyword_processor.add_keyword('Bay Area') 
  6. keywords_found = keyword_processor.extract_keywords('I love Big Apple and Bay Area.') 
  7. keywords_found 
  8. ['New York', 'Bay Area']

替換關(guān)鍵字

 
 
 
 
  1. keyword_processor.add_keyword('New Delhi', 'NCR region') 
  2. new_sentence = keyword_processor.replace_keywords('I love Big Apple and new delhi.') 
  3. new_sentence 
  4. 'I love New York and NCR region.' 
  5. Fuzzywuzzy

這個(gè)庫(kù)的名字聽起來很奇怪,但是在字符串匹配方面,fuzzywuzzy 是一個(gè)非常有用的庫(kù)??梢院芊奖愕貙?shí)現(xiàn)計(jì)算字符串匹配度、令牌匹配度等操作,也可以很方便地匹配保存在不同數(shù)據(jù)庫(kù)中的記錄。

安裝:

 
 
 
 
  1. $ pip install fuzzywuzzy

例子:

 
 
 
 
  1. from fuzzywuzzy import fuzz 
  2. from fuzzywuzzy import process 
  3. # 簡(jiǎn)單匹配度 
  4. fuzz.ratio("this is a test", "this is a test!") 
  5. 97 
  6. # 模糊匹配度 
  7. fuzz.partial_ratio("this is a test", "this is a test!") 
  8.  100

更多有趣例子可以在 GitHub 倉(cāng)庫(kù)找到。

PyFlux

時(shí)間序列分析是機(jī)器學(xué)習(xí)領(lǐng)域中最常見的問題之一。PyFlux 是 Python 中的一個(gè)開源庫(kù),它是為處理時(shí)間序列問題而構(gòu)建的。該庫(kù)擁有一系列優(yōu)秀的現(xiàn)代時(shí)間序列模型,包括但不限于 ARIMA、GARCH 和 VAR 模型。簡(jiǎn)而言之,PyFlux 為時(shí)間序列建模提供了一種概率方法。值得嘗試一下。

安裝

 
 
 
 
  1. pip install pyflux

例子

詳細(xì)用法和例子請(qǐng)參考官方文檔。

Ipyvolume

結(jié)果展示也是數(shù)據(jù)科學(xué)中的一個(gè)重要方面。能夠?qū)⒔Y(jié)果進(jìn)行可視化將具有很大優(yōu)勢(shì)。IPyvolume 是一個(gè)可以在 Jupyter notebook 中可視化三維體和圖形(例如三維散點(diǎn)圖等)的 Python 庫(kù),并且只需要少量配置。但它目前還是 1.0 之前的版本階段。用一個(gè)比較恰當(dāng)?shù)谋扔鱽斫忉尵褪牵篒Pyvolume 的 volshow 對(duì)于三維數(shù)組就像 matplotlib 的 imshow 對(duì)于二維數(shù)組一樣好用??梢栽谶@里獲取更多。

使用 pip

 
 
 
 
  1. $ pip install ipyvolume

使用 Conda/Anaconda

 
 
 
 
  1. $ conda install -c conda-forge ipyvolume

例子

  •  動(dòng)畫

  •  體繪制

Dash

Dash 是一個(gè)高效的用于構(gòu)建 web 應(yīng)用程序的 Python 框架。它是在 Flask、Plotly.js 和 React.js 基礎(chǔ)上設(shè)計(jì)而成的,綁定了很多比如下拉框、滑動(dòng)條和圖表的現(xiàn)代 UI 元素,你可以直接使用 Python 代碼來寫相關(guān)分析,而無需再使用 javascript。Dash 非常適合構(gòu)建數(shù)據(jù)可視化應(yīng)用程序。然后,這些應(yīng)用程序可以在 web 瀏覽器中呈現(xiàn)。用戶指南可以在這里獲取。

安裝

 
 
 
 
  1. pip install dash==0.29.0  # 核心 dash 后端 
  2. pip install dash-html-components==0.13.2  # HTML 組件 
  3. pip install dash-core-components==0.36.0  # 增強(qiáng)組件 
  4. pip install dash-table==3.1.3  # 交互式 DataTable 組件(最新?。?/li>

例子下面的例子展示了一個(gè)具有下拉功能的高度交互式圖表。當(dāng)用戶在下拉菜單中選擇一個(gè)值時(shí),應(yīng)用程序代碼將動(dòng)態(tài)地將數(shù)據(jù)從 Google Finance 導(dǎo)出到 panda DataFrame。

Gym

OpenAI 的 Gym 是一款用于增強(qiáng)學(xué)習(xí)算法的開發(fā)和比較工具包。它兼容任何數(shù)值計(jì)算庫(kù),如 TensorFlow 或 Theano。Gym 庫(kù)是測(cè)試問題集合的必備工具,這個(gè)集合也稱為環(huán)境 —— 你可以用它來開發(fā)你的強(qiáng)化學(xué)習(xí)算法。這些環(huán)境有一個(gè)共享接口,允許你進(jìn)行通用算法的編寫。

安裝

 
 
 
 
  1. pip install gym

例子這個(gè)例子會(huì)運(yùn)行CartPole-v0環(huán)境中的一個(gè)實(shí)例,它的時(shí)間步數(shù)為 1000,每一步都會(huì)渲染整個(gè)場(chǎng)景。

總結(jié)

以上這些有用的數(shù)據(jù)科學(xué) Python 庫(kù)都是我精心挑選出來的,不是常見的如 numpy 和 pandas 等庫(kù)。如果你知道其它庫(kù),可以添加到列表中來,請(qǐng)?jiān)谙旅娴脑u(píng)論中提一下。另外別忘了先嘗試運(yùn)行一下它們。


本文名稱:非常實(shí)用的Python庫(kù)
網(wǎng)站網(wǎng)址:http://www.dlmjj.cn/article/dhocedd.html