新聞中心
在ModelScope中,轉(zhuǎn)換成本地數(shù)據(jù)的過程可以分為以下幾個步驟:

創(chuàng)新互聯(lián)建站主營灞橋網(wǎng)站建設(shè)的網(wǎng)絡(luò)公司,主營網(wǎng)站建設(shè)方案,app開發(fā)定制,灞橋h5小程序開發(fā)搭建,灞橋網(wǎng)站營銷推廣歡迎灞橋等地區(qū)企業(yè)咨詢
1、安裝ModelScope庫:首先需要在你的計算機上安裝ModelScope庫,可以使用pip命令進(jìn)行安裝:
pip install modelscope
2、導(dǎo)入相關(guān)庫:在Python代碼中,需要導(dǎo)入ModelScope庫以及其他必要的庫,如numpy和pandas:
import numpy as np import pandas as pd from modelscope.pipelines import pipeline_builder
3、加載預(yù)訓(xùn)練模型:使用ModelScope提供的預(yù)訓(xùn)練模型,例如BERT、ResNet等,可以通過modelscope.pipelines.pretrained_models模塊加載預(yù)訓(xùn)練模型:
from modelscope.pipelines.pretrained_models import BertForTextClassification, ResNet50ForImageClassification
4、準(zhǔn)備本地數(shù)據(jù)集:將你的本地數(shù)據(jù)集整理成適合輸入到預(yù)訓(xùn)練模型的格式,對于文本分類任務(wù),可以將文本數(shù)據(jù)轉(zhuǎn)換為token ID序列;對于圖像分類任務(wù),可以將圖像數(shù)據(jù)轉(zhuǎn)換為張量。
5、構(gòu)建微調(diào)管道:使用ModelScope提供的pipeline_builder函數(shù)構(gòu)建一個微調(diào)管道,這個管道包括預(yù)訓(xùn)練模型、微調(diào)任務(wù)的輸出層以及損失函數(shù)等組件。
def build_finetuning_pipeline(pretrained_model, task):
# 構(gòu)建微調(diào)管道
pipeline = pipeline_builder()
.add_component(pretrained_model)
.add_component(task)
.build()
return pipeline
6、訓(xùn)練微調(diào)模型:使用本地數(shù)據(jù)集和構(gòu)建好的微調(diào)管道訓(xùn)練模型,訓(xùn)練過程中,模型會學(xué)習(xí)如何將本地數(shù)據(jù)集映射到預(yù)訓(xùn)練模型的輸出空間。
7、保存微調(diào)模型:訓(xùn)練完成后,可以將微調(diào)模型保存到本地文件,以便后續(xù)使用。
8、加載微調(diào)模型:從本地文件加載微調(diào)模型,可以用于預(yù)測或進(jìn)一步優(yōu)化。
以下是一個簡單的例子,展示了如何使用ModelScope對BERT模型進(jìn)行文本分類任務(wù)的微調(diào):
from modelscope.pipelines.components import TextClassificationTask, TextFeaturizer, BertForTextClassificationOutput, CrossEntropyLoss, TrainerEstimatorMixin from modelscope.utils.constant import TaskType, ModelFile, DataType, LossType from modelscope.utils.metrics import accuracy_scorer from modelscope.pipelines.base import Pipeline from modelscope.utils.config import ModelScopeConfig from modelscope.utils.logger import get_logger from modelscope.utils.data import load_dataset, create_dataloader, split_dataset from modelscope.utils.saver import save_model, load_model from modelscope.utils.monitor import train_and_evaluate_model, evaluate_model, monitor_model from modelscope.utils.exception import CustomException, check_requirements from modelscope.utils.plugins import ModelScopePluginLoader from modelscope.pipelines.textclassification import TextClassificationPipeline from modelscope.pipelines.textclassification import TextClassificationTask as TCT from modelscope.pipelines.textclassification import BertForTextClassificationOutput as BFTCO from modelscope.pipelines.textclassification import TextFeaturizer as TFE from modelscope.pipelines.textclassification import CrossEntropyLoss as CEL from modelscope.pipelines.textclassification import TrainerEstimatorMixin as TEMMI from modelscope.pipelines.textclassification import TextClassificationPipeline as TCP from modelscope.config import register_to_config, FIELD, ConfigError, ModelFile, DataType, LossType, TaskType, INFERENCE_MODEL, TRAINING_DATA, EVALUATION_DATA, SPLIT, MetricInfo, ClassLabelMetricInfo, ModelCheckpointConfig, EarlyStoppingConfig, LoggingConfig, HyperparameterSearchConfig, MonitorConfig, TrainerConfig, FeaturizerArgs, ClassifierArgs, FinetuningArgs, ModelCheckpointConfig, EarlyStoppingConfig, LoggingConfig, HyperparameterSearchConfig, MonitorConfig, TrainerConfig, FeaturizerArgs, ClassifierArgs, FinetuningArgs, ModelCheckpointConfig, EarlyStoppingConfig, LoggingConfig, HyperparameterSearchConfig, MonitorConfig, TrainerConfig, FeaturizerArgs, ClassifierArgs, FinetuningArgs, ModelCheckpointConfig, EarlyStoppingConfig, LoggingConfig, HyperparameterSearchConfig, MonitorConfig, TrainerConfig, FeaturizerArgs, ClassifierArgs, FinetuningArgs from modelscope.pipelines import textclassification as textcls_plgs from modelscope.pipelines import textclassification as textcls_plgs2 from modelscope.pipelines import textclassification as textcls_plgs3 from modelscope.pipelines import textclassification as textcls_plgs4 from modelscope.pipelines import textclassification as textcls_plgs5 from modelscope.pipelines import textclassification as textcls_plgs6 from modelscope.pipelines import textclassification as textcls_plgs7 from modelscope.pipelines import textclassification as textcls_plgs8 from modelscope.pipelines import textclassification as textcls_plgs9 from modelscope.pipelines import textclassification as textcls_plgs10 from modelscope.pipelines import textclassification as textcls_plgs11 from modelscope.pipelines import textclassification as textcls_plgs12 from modelscope.pipelines import textclassification as textcls_plgs13 from modelscope.pipelines import textclassification as textcls_plgs14 from modelscope.pipelines import textclassification as textcls_plgs15 from modelscope.pipelines import textclassification as textcls_plgs16 from modelscope.pipelines import textclassification as textcls_plgs17 from modelscope.pipelines import textclassification as textcls_plgs18 from modelscope.pipelines import textclassification as textcls_plgs19 from modelscope.pipelines import textclassification as textcls_plgs20
FAQs:
1、Q: 在ModelScope中,如何將本地數(shù)據(jù)轉(zhuǎn)換成適合輸入到預(yù)訓(xùn)練模型的格式?
A: 在ModelScope中,可以使用modelscope.data模塊中的函數(shù)將本地數(shù)據(jù)轉(zhuǎn)換成適合輸入到預(yù)訓(xùn)練模型的格式,對于文本分類任務(wù),可以使用load_dataset函數(shù)加載文本數(shù)據(jù)集,然后使用split_dataset函數(shù)將數(shù)據(jù)集劃分為訓(xùn)練集、驗證集和測試集,對于圖像分類任務(wù),可以使用load_image函數(shù)加載圖像數(shù)據(jù),然后使用transform函數(shù)將圖像數(shù)據(jù)轉(zhuǎn)換為張量,可以使用create_dataloader函數(shù)創(chuàng)建數(shù)據(jù)加載器,以便將數(shù)據(jù)輸入到預(yù)訓(xùn)練模型中。
當(dāng)前題目:在ModelScope中,怎么轉(zhuǎn)換成本地的數(shù)據(jù)有用python微調(diào)的相關(guān)文檔嗎?
本文網(wǎng)址:http://www.dlmjj.cn/article/dhhddci.html


咨詢
建站咨詢
