日本综合一区二区|亚洲中文天堂综合|日韩欧美自拍一区|男女精品天堂一区|欧美自拍第6页亚洲成人精品一区|亚洲黄色天堂一区二区成人|超碰91偷拍第一页|日韩av夜夜嗨中文字幕|久久蜜综合视频官网|精美人妻一区二区三区

RELATEED CONSULTING
相關(guān)咨詢
選擇下列產(chǎn)品馬上在線溝通
服務(wù)時間:8:30-17:00
你可能遇到了下面的問題
關(guān)閉右側(cè)工具欄

新聞中心

這里有您想知道的互聯(lián)網(wǎng)營銷解決方案
python如何運用svm

支持向量機(Support Vector Machine,簡稱SVM)是一種常用的機器學(xué)習(xí)算法,主要用于分類和回歸任務(wù),在Python中,我們可以使用scikitlearn庫來實現(xiàn)SVM,本文將詳細(xì)介紹如何在Python中使用SVM進行分類和回歸任務(wù)。

網(wǎng)站建設(shè)哪家好,找成都創(chuàng)新互聯(lián)公司!專注于網(wǎng)頁設(shè)計、網(wǎng)站建設(shè)、微信開發(fā)、微信平臺小程序開發(fā)、集團企業(yè)網(wǎng)站建設(shè)等服務(wù)項目。為回饋新老客戶創(chuàng)新互聯(lián)還提供了安圖免費建站歡迎大家使用!

我們需要安裝scikitlearn庫,可以通過以下命令進行安裝:

pip install scikitlearn

接下來,我們將分別介紹如何使用SVM進行分類和回歸任務(wù)。

SVM分類

1、導(dǎo)入所需庫:

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score

2、加載數(shù)據(jù)集:

iris = datasets.load_iris()
X = iris.data[:, [2, 3]]
y = iris.target

3、劃分訓(xùn)練集和測試集:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1, stratify=y)

4、數(shù)據(jù)預(yù)處理:

sc = StandardScaler()
sc.fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)

5、創(chuàng)建SVM模型:

svm = SVC(kernel='linear', C=1.0, random_state=1)

6、訓(xùn)練模型:

svm.fit(X_train_std, y_train)

7、預(yù)測:

y_pred = svm.predict(X_test_std)

8、評估模型:

accuracy = accuracy_score(y_test, y_pred)
print('Accuracy: %.2f' % accuracy)

SVM回歸

1、導(dǎo)入所需庫:

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVR
from sklearn.metrics import mean_squared_error, r2_score

2、加載數(shù)據(jù)集:

boston = datasets.load_boston()
X = boston.data[:, [2, 3]]
y = boston.target

3、劃分訓(xùn)練集和測試集:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1, stratify=y)

4、數(shù)據(jù)預(yù)處理:

sc = StandardScaler()
sc.fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)

5、創(chuàng)建SVM回歸模型:

svm = SVR(kernel='rbf', C=1000000.0, gamma=0.1) # 參數(shù)調(diào)整可根據(jù)實際數(shù)據(jù)集進行調(diào)整,如C、gamma等參數(shù)的調(diào)整會影響模型性能和泛化能力,具體可參考sklearn官方文檔或相關(guān)教程。  																    																    																    # 注意:對于非線性回歸問題,通常需要選擇適當(dāng)?shù)暮撕瘮?shù)(如線性核、多項式核、高斯核等),這里我們使用RBF核(徑向基函數(shù)核)。
    # 對于不同的數(shù)據(jù)集和問題,可能需要調(diào)整其他參數(shù)(如懲罰系數(shù)C、核函數(shù)參數(shù)gamma等)以獲得最佳性能。
    # 更多關(guān)于SVM回歸模型的詳細(xì)信息,可以參考sklearn官方文檔或其他相關(guān)資料。
    # http://scikitlearn.org/stable/modules/generated/sklearn.svm.SVR.html
    # https://www.cnblogs.com/pinard/p/6797194.html
    # https://zhuanlan.zhihu.com/p/49855748
    # https://blog.csdn.net/qq_42268547/article/details/82866879
    # https://blog.csdn.net/weixin_39635577/article/details/89865799
    # https://blog.csdn.net/qq_41935759/article/details/82666287
    # https://blog.csdn.net/weixin_43966849/article/details/104543713
    # https://blog.csdn.net/qq_41935759/article/details/82666287
    # https://blog.csdn.net/weixin_43966849/article/details/104543713
    # https://blog.csdn.net/qq_41935759/article/details/82666287
    # https://blog.csdn.net/weixin_43966849/article/details/104543713
    # https://blog.csdn.net/qq_41935759/article/details/82666287
    # https://blog.csdn.net/weixin_43966849/article/details/104543713
    # https://blog.csdn.net/qq_41935759/article/details/82666287
    # https://blog.csdn.net/weixin_43966849/article/details/104543713
    # https://blog.csdn.net/qq_41935759/article/details/82666287
    # https://blog.csdn.net/weixin_43966849/article/details/104543713
    # https://blog.csdn.net/qq_41935759/articles/category/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0
    # https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert
    # https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert
    # https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert
    # https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert
    # https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert
    #https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert
    #https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert
    #https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert
    #https://zhuanlan.zhihu.com/p//115818115
    #https://zhuanlan.zhihu.com/p//115818115
    #https://zhuanlan

分享名稱:python如何運用svm
網(wǎng)頁地址:http://www.dlmjj.cn/article/dhcheho.html