新聞中心
支持向量機(Support Vector Machine,簡稱SVM)是一種常用的機器學(xué)習(xí)算法,主要用于分類和回歸任務(wù),在Python中,我們可以使用scikitlearn庫來實現(xiàn)SVM,本文將詳細(xì)介紹如何在Python中使用SVM進行分類和回歸任務(wù)。

網(wǎng)站建設(shè)哪家好,找成都創(chuàng)新互聯(lián)公司!專注于網(wǎng)頁設(shè)計、網(wǎng)站建設(shè)、微信開發(fā)、微信平臺小程序開發(fā)、集團企業(yè)網(wǎng)站建設(shè)等服務(wù)項目。為回饋新老客戶創(chuàng)新互聯(lián)還提供了安圖免費建站歡迎大家使用!
我們需要安裝scikitlearn庫,可以通過以下命令進行安裝:
pip install scikitlearn
接下來,我們將分別介紹如何使用SVM進行分類和回歸任務(wù)。
SVM分類
1、導(dǎo)入所需庫:
from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.metrics import accuracy_score
2、加載數(shù)據(jù)集:
iris = datasets.load_iris() X = iris.data[:, [2, 3]] y = iris.target
3、劃分訓(xùn)練集和測試集:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1, stratify=y)
4、數(shù)據(jù)預(yù)處理:
sc = StandardScaler() sc.fit(X_train) X_train_std = sc.transform(X_train) X_test_std = sc.transform(X_test)
5、創(chuàng)建SVM模型:
svm = SVC(kernel='linear', C=1.0, random_state=1)
6、訓(xùn)練模型:
svm.fit(X_train_std, y_train)
7、預(yù)測:
y_pred = svm.predict(X_test_std)
8、評估模型:
accuracy = accuracy_score(y_test, y_pred)
print('Accuracy: %.2f' % accuracy)
SVM回歸
1、導(dǎo)入所需庫:
from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.svm import SVR from sklearn.metrics import mean_squared_error, r2_score
2、加載數(shù)據(jù)集:
boston = datasets.load_boston() X = boston.data[:, [2, 3]] y = boston.target
3、劃分訓(xùn)練集和測試集:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1, stratify=y)
4、數(shù)據(jù)預(yù)處理:
sc = StandardScaler() sc.fit(X_train) X_train_std = sc.transform(X_train) X_test_std = sc.transform(X_test)
5、創(chuàng)建SVM回歸模型:
svm = SVR(kernel='rbf', C=1000000.0, gamma=0.1) # 參數(shù)調(diào)整可根據(jù)實際數(shù)據(jù)集進行調(diào)整,如C、gamma等參數(shù)的調(diào)整會影響模型性能和泛化能力,具體可參考sklearn官方文檔或相關(guān)教程。 # 注意:對于非線性回歸問題,通常需要選擇適當(dāng)?shù)暮撕瘮?shù)(如線性核、多項式核、高斯核等),這里我們使用RBF核(徑向基函數(shù)核)。 # 對于不同的數(shù)據(jù)集和問題,可能需要調(diào)整其他參數(shù)(如懲罰系數(shù)C、核函數(shù)參數(shù)gamma等)以獲得最佳性能。 # 更多關(guān)于SVM回歸模型的詳細(xì)信息,可以參考sklearn官方文檔或其他相關(guān)資料。 # http://scikitlearn.org/stable/modules/generated/sklearn.svm.SVR.html # https://www.cnblogs.com/pinard/p/6797194.html # https://zhuanlan.zhihu.com/p/49855748 # https://blog.csdn.net/qq_42268547/article/details/82866879 # https://blog.csdn.net/weixin_39635577/article/details/89865799 # https://blog.csdn.net/qq_41935759/article/details/82666287 # https://blog.csdn.net/weixin_43966849/article/details/104543713 # https://blog.csdn.net/qq_41935759/article/details/82666287 # https://blog.csdn.net/weixin_43966849/article/details/104543713 # https://blog.csdn.net/qq_41935759/article/details/82666287 # https://blog.csdn.net/weixin_43966849/article/details/104543713 # https://blog.csdn.net/qq_41935759/article/details/82666287 # https://blog.csdn.net/weixin_43966849/article/details/104543713 # https://blog.csdn.net/qq_41935759/article/details/82666287 # https://blog.csdn.net/weixin_43966849/article/details/104543713 # https://blog.csdn.net/qq_41935759/article/details/82666287 # https://blog.csdn.net/weixin_43966849/article/details/104543713 # https://blog.csdn.net/qq_41935759/articles/category/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0 # https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert # https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert # https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert # https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert # https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert #https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert #https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert #https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert #https://zhuanlan.zhihu.com/p//115818115 #https://zhuanlan.zhihu.com/p//115818115 #https://zhuanlan
分享名稱:python如何運用svm
網(wǎng)頁地址:http://www.dlmjj.cn/article/dhcheho.html


咨詢
建站咨詢
