新聞中心
這里有您想知道的互聯(lián)網(wǎng)營銷解決方案
利用PyTorch如何實現(xiàn)VGG16的方法-創(chuàng)新互聯(lián)
創(chuàng)新互聯(lián)www.cdcxhl.cn八線動態(tài)BGP香港云服務器提供商,新人活動買多久送多久,劃算不套路!
這篇文章主要介紹利用PyTorch如何實現(xiàn)VGG16,文中示例代碼介紹的非常詳細,具有一定的參考價值,感興趣的小伙伴們一定要看完!
我就廢話不多說了,大家還是直接看代碼吧~
import torch import torch.nn as nn import torch.nn.functional as F class VGG16(nn.Module): def __init__(self): super(VGG16, self).__init__() # 3 * 224 * 224 self.conv1_1 = nn.Conv2d(3, 64, 3) # 64 * 222 * 222 self.conv1_2 = nn.Conv2d(64, 64, 3, padding=(1, 1)) # 64 * 222* 222 self.maxpool1 = nn.MaxPool2d((2, 2), padding=(1, 1)) # pooling 64 * 112 * 112 self.conv2_1 = nn.Conv2d(64, 128, 3) # 128 * 110 * 110 self.conv2_2 = nn.Conv2d(128, 128, 3, padding=(1, 1)) # 128 * 110 * 110 self.maxpool2 = nn.MaxPool2d((2, 2), padding=(1, 1)) # pooling 128 * 56 * 56 self.conv3_1 = nn.Conv2d(128, 256, 3) # 256 * 54 * 54 self.conv3_2 = nn.Conv2d(256, 256, 3, padding=(1, 1)) # 256 * 54 * 54 self.conv3_3 = nn.Conv2d(256, 256, 3, padding=(1, 1)) # 256 * 54 * 54 self.maxpool3 = nn.MaxPool2d((2, 2), padding=(1, 1)) # pooling 256 * 28 * 28 self.conv4_1 = nn.Conv2d(256, 512, 3) # 512 * 26 * 26 self.conv4_2 = nn.Conv2d(512, 512, 3, padding=(1, 1)) # 512 * 26 * 26 self.conv4_3 = nn.Conv2d(512, 512, 3, padding=(1, 1)) # 512 * 26 * 26 self.maxpool4 = nn.MaxPool2d((2, 2), padding=(1, 1)) # pooling 512 * 14 * 14 self.conv5_1 = nn.Conv2d(512, 512, 3) # 512 * 12 * 12 self.conv5_2 = nn.Conv2d(512, 512, 3, padding=(1, 1)) # 512 * 12 * 12 self.conv5_3 = nn.Conv2d(512, 512, 3, padding=(1, 1)) # 512 * 12 * 12 self.maxpool5 = nn.MaxPool2d((2, 2), padding=(1, 1)) # pooling 512 * 7 * 7 # view self.fc1 = nn.Linear(512 * 7 * 7, 4096) self.fc2 = nn.Linear(4096, 4096) self.fc3 = nn.Linear(4096, 1000) # softmax 1 * 1 * 1000 def forward(self, x): # x.size(0)即為batch_size in_size = x.size(0) out = self.conv1_1(x) # 222 out = F.relu(out) out = self.conv1_2(out) # 222 out = F.relu(out) out = self.maxpool1(out) # 112 out = self.conv2_1(out) # 110 out = F.relu(out) out = self.conv2_2(out) # 110 out = F.relu(out) out = self.maxpool2(out) # 56 out = self.conv3_1(out) # 54 out = F.relu(out) out = self.conv3_2(out) # 54 out = F.relu(out) out = self.conv3_3(out) # 54 out = F.relu(out) out = self.maxpool3(out) # 28 out = self.conv4_1(out) # 26 out = F.relu(out) out = self.conv4_2(out) # 26 out = F.relu(out) out = self.conv4_3(out) # 26 out = F.relu(out) out = self.maxpool4(out) # 14 out = self.conv5_1(out) # 12 out = F.relu(out) out = self.conv5_2(out) # 12 out = F.relu(out) out = self.conv5_3(out) # 12 out = F.relu(out) out = self.maxpool5(out) # 7 # 展平 out = out.view(in_size, -1) out = self.fc1(out) out = F.relu(out) out = self.fc2(out) out = F.relu(out) out = self.fc3(out) out = F.log_softmax(out, dim=1) return out
文章標題:利用PyTorch如何實現(xiàn)VGG16的方法-創(chuàng)新互聯(lián)
路徑分享:http://www.dlmjj.cn/article/csigoj.html