新聞中心
歸并排序(MERGE-SORT)是利用歸并的思想實現(xiàn)的排序方法,該算法采用經(jīng)典的分治(divide-and-conquer)策略(分治法將問題分(divide)成一些小的問題然后遞歸求解,而**治(conquer)**的階段則將分的階段得到的各答案”修補”在一起,即分而治之),下面為大家詳細(xì)講解一下歸并排序。

專注于為中小企業(yè)提供成都網(wǎng)站建設(shè)、網(wǎng)站建設(shè)服務(wù),電腦端+手機(jī)端+微信端的三站合一,更高效的管理,為中小企業(yè)清河免費做網(wǎng)站提供優(yōu)質(zhì)的服務(wù)。我們立足成都,凝聚了一批互聯(lián)網(wǎng)行業(yè)人才,有力地推動了近千家企業(yè)的穩(wěn)健成長,幫助中小企業(yè)通過網(wǎng)站建設(shè)實現(xiàn)規(guī)模擴(kuò)充和轉(zhuǎn)變。
作為一種典型的分而治之思想的算法應(yīng)用,歸并排序的實現(xiàn)由兩種方法:
-
自上而下的遞歸(所有遞歸的方法都可以用迭代重寫,所以就有了第 2 種方法);
-
自下而上的迭代;
在《數(shù)據(jù)結(jié)構(gòu)與算法 JavaScript 描述》中,作者給出了自下而上的迭代方法。但是對于遞歸法,作者卻認(rèn)為:
However, it is not possible to do so in JavaScript, as the recursion goes too deep for the language to handle.
然而,在 JavaScript 中這種方式不太可行,因為這個算法的遞歸深度對它來講太深了。
說實話,我不太理解這句話。意思是 JavaScript 編譯器內(nèi)存太小,遞歸太深容易造成內(nèi)存溢出嗎?還望有大神能夠指教。
和選擇排序一樣,歸并排序的性能不受輸入數(shù)據(jù)的影響,但表現(xiàn)比選擇排序好的多,因為始終都是 O(nlogn) 的時間復(fù)雜度。代價是需要額外的內(nèi)存空間。
算法步驟
-
申請空間,使其大小為兩個已經(jīng)排序序列之和,該空間用來存放合并后的序列;
-
設(shè)定兩個指針,最初位置分別為兩個已經(jīng)排序序列的起始位置;
-
比較兩個指針?biāo)赶虻脑?,選擇相對小的元素放入到合并空間,并移動指針到下一位置;
-
重復(fù)步驟 3 直到某一指針達(dá)到序列尾;
-
將另一序列剩下的所有元素直接復(fù)制到合并序列尾。
動圖演示
代碼實現(xiàn)
JavaScript
實例
function mergeSort(arr) { // 采用自上而下的遞歸方法
var len = arr.length;
if(len return arr;
}
var middle = Math.floor(len / 2),
left = arr.slice(0, middle),
right = arr.slice(middle);
return merge(mergeSort(left), mergeSort(right));
}
function merge(left, right)
{
var result = [];
while (left.length && right.length) {
if (left[0] else {
result.push(right.shift());
}
}
while (left.length)
result.push(left.shift());
while (right.length)
result.push(right.shift());
return result;
}
Python
實例
def mergeSort(arr):
import math
if(len(arr)return arr
middle = math.floor(len(arr)/2)
left, right = arr[0:middle], arr[middle:]
return merge(mergeSort(left), mergeSort(right))
def merge(left,right):
result = []
while left and right:
if left[0] else:
result.append(right.pop(0));
while left:
result.append(left.pop(0))
while right:
result.append(right.pop(0));
return result
Go
實例
func mergeSort(arr []int) []int {
length := len(arr)
if length return arr
}
middle := length / 2
left := arr[0:middle]
right := arr[middle:]
return merge(mergeSort(left), mergeSort(right))
}
func merge(left []int, right []int) []int {
var result []int
for len(left) != 0 && len(right) != 0 {
if left[0] else {
result = append(result, right[0])
right = right[1:]
}
}
for len(left) != 0 {
result = append(result, left[0])
left = left[1:]
}
for len(right) != 0 {
result = append(result, right[0])
right = right[1:]
}
return result
}
Java
實例
public class MergeSort implements IArraySort {
@Override
public int[] sort(int[] sourceArray) throws Exception {
// 對 arr 進(jìn)行拷貝,不改變參數(shù)內(nèi)容
int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
if (arr.length return arr;
}
int middle = (int) Math.floor(arr.length / 2);
int[] left = Arrays.copyOfRange(arr, 0, middle);
int[] right = Arrays.copyOfRange(arr, middle, arr.length);
return merge(sort(left), sort(right));
}
protected int[] merge(int[] left, int[] right) {
int[] result = new int[left.length + right.length];
int i = 0;
while (left.length > 0 && right.length > 0) {
if (left[0] else {
result[i++] = right[0];
right = Arrays.copyOfRange(right, 1, right.length);
}
}
while (left.length > 0) {
result[i++] = left[0];
left = Arrays.copyOfRange(left, 1, left.length);
}
while (right.length > 0) {
result[i++] = right[0];
right = Arrays.copyOfRange(right, 1, right.length);
}
return result;
}
}
PHP
實例
function mergeSort($arr)
{
$len = count($arr);
if ($len return $arr;
}
$middle = floor($len / 2);
$left = array_slice($arr, 0, $middle);
$right = array_slice($arr, $middle);
return merge(mergeSort($left), mergeSort($right));
}
function merge($left, $right)
{
$result = [];
while (count($left) > 0 && count($right) > 0) {
if ($left[0] $right[0]) {
$result[] = array_shift($left);
} else {
$result[] = array_shift($right);
}
}
while (count($left))
$result[] = array_shift($left);
while (count($right))
$result[] = array_shift($right);
return $result;
}
C
實例
int min(int x, int y) {
return x for (seg = 1; seg for (start = 0; start while (start1 while (start1 while (start2 if (a != arr) {
int i;
for (i = 0; i
遞歸版:
實例
void merge_sort_recursive(int arr[], int reg[], int start, int end) {
if (start >= end)
return;
int len = end - start, mid = (len >> 1) + start;
int start1 = start, end1 = mid;
int start2 = mid + 1, end2 = end;
merge_sort_recursive(arr, reg, start1, end1);
merge_sort_recursive(arr, reg, start2, end2);
int k = start;
while (start1 while (start1 while (start2 for (k = start; k
C++
迭代版:
實例
template // 整數(shù)或浮點數(shù)皆可使用,若要使用物件(class)時必須設(shè)定"小於"(for (int seg = 1; seg for (int start = 0; start while (start1 while (start1 while (start2 if (a != arr) { for (int i = 0; i
遞歸版:
實例
void Merge(vector &Array, int front, int mid, int end) { // preconditions: // Array[front...mid] is sorted // Array[mid+1 ... end] is sorted // Copy Array[front ... mid] to LeftSubArray // Copy Array[mid+1 ... end] to RightSubArray vector LeftSubArray(Array.begin() + front, Array.begin() + mid + 1); vector RightSubArray(Array.begin() + mid + 1, Array.begin() + end + 1); int idxLeft = 0, idxRight = 0; LeftSubArray.insert(LeftSubArray.end(), numeric_limits::max()); RightSubArray.insert(RightSubArray.end(), numeric_limits::max()); // Pick min of LeftSubArray[idxLeft] and RightSubArray[idxRight], and put into Array[i] for (int i = front; i if (LeftSubArray[idxLeft] else { Array[i] = RightSubArray[idxRight]; idxRight++; } }}void MergeSort(vector &Array, int front, int end) { if (front >= end) return; int mid = (front + end) / 2; MergeSort(Array, front, mid); MergeSort(Array, mid + 1, end); Merge(Array, front, mid, end);}
C#
實例
public static List sort(List lst) {
if (lst.Count return lst;
int mid = lst.Count / 2;
List left = new List(); // 定義左側(cè)List
List right = new List(); // 定義右側(cè)List
// 以下兩個循環(huán)把 lst 分為左右兩個 List
for (int i = 0; i for (int j = mid; j return merge(left, right);
}
///
/// 合併兩個已經(jīng)排好序的List
///
/// 左側(cè)List
/// 右側(cè)List
///
static List merge(List left, List right) {
List temp = new List();
while (left.Count > 0 && right.Count > 0) {
if (left[0] else {
temp.Add(right[0]);
right.RemoveAt(0);
}
}
if (left.Count > 0) {
for (int i = 0; i if (right.Count > 0) {
for (int i = 0; i return temp;
}
Ruby
實例
def merge list
return list if list.size # Merge
lambda { |left, right|
final = []
until left.empty? or right.empty?
final if left.first else right.shift end
end
final + left + right
}.call merge(list[0...pivot]), merge(list[pivot..-1])
end
文章標(biāo)題:詳解歸并排序
分享路徑:http://www.dlmjj.cn/article/cdgcpph.html


咨詢
建站咨詢
