新聞中心
這里有您想知道的互聯(lián)網(wǎng)營(yíng)銷解決方案
ModelScope可視化微調(diào)的代碼有嗎?
ModelScope可視化微調(diào)的代碼主要包括以下幾個(gè)部分:

1、導(dǎo)入所需庫(kù)
2、加載預(yù)訓(xùn)練模型
3、準(zhǔn)備數(shù)據(jù)集
4、定義損失函數(shù)和優(yōu)化器
5、進(jìn)行微調(diào)
6、評(píng)估模型性能
下面是詳細(xì)的代碼實(shí)現(xiàn):
1. 導(dǎo)入所需庫(kù)
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from modelscope import VisualizationModel
2. 加載預(yù)訓(xùn)練模型
model = VisualizationModel()
model.load_state_dict(torch.load('pretrained_model.pth'))
3. 準(zhǔn)備數(shù)據(jù)集
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
train_dataset = datasets.ImageFolder(root='train_data', transform=transform)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
4. 定義損失函數(shù)和優(yōu)化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
5. 進(jìn)行微調(diào)
num_epochs = 10
for epoch in range(num_epochs):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f'Epoch {epoch + 1}, Loss: {running_loss / (i + 1)}')
6. 評(píng)估模型性能
test_dataset = datasets.ImageFolder(root='test_data', transform=transform)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Accuracy: {100 * correct / total}%')
這段代碼首先導(dǎo)入了所需的庫(kù),然后加載了預(yù)訓(xùn)練模型,接著,準(zhǔn)備了訓(xùn)練和測(cè)試數(shù)據(jù)集,并定義了損失函數(shù)和優(yōu)化器,在微調(diào)過(guò)程中,進(jìn)行了多個(gè)epoch的訓(xùn)練,并在每個(gè)epoch后輸出了當(dāng)前的損失值,評(píng)估了模型在測(cè)試集上的性能。
本文名稱:ModelScope可視化微調(diào)的代碼有嗎?
瀏覽地址:http://www.dlmjj.cn/article/dpssoec.html


咨詢
建站咨詢
